Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cancer Res Commun ; 3(9): 1731-1742, 2023 09.
Article in English | MEDLINE | ID: mdl-37663435

ABSTRACT

DNA-dependent protein kinase (DNA-PK), a driver of the non-homologous end-joining (NHEJ) DNA damage response pathway, plays an instrumental role in repairing double-strand breaks (DSB) induced by DNA-damaging poisons. We evaluate ZL-2201, an orally bioavailable, highly potent, and selective pharmacologic inhibitor of DNA-PK activity, for the treatment of human cancerous malignancies. ZL-2201 demonstrated greater selectivity for DNA-PK and effectively inhibited DNA-PK autophosphorylation in a concentration- and time-dependent manner. Initial data suggested a potential correlation between ataxia-telangiectasia mutated (ATM) deficiency and ZL-2201 sensitivity. More so, ZL-2201 showed strong synergy with topoisomerase II inhibitors independent of ATM status in vitro. In vivo oral administration of ZL-2201 demonstrated dose-dependent antitumor activity in the NCI-H1703 xenograft model and significantly enhanced the activity of approved DNA-damaging agents in A549 and FaDu models. From a phosphoproteomic mass spectrometry screen, we identified and validated that ZL-2201 and PRKDC siRNA decreased Ser108 phosphorylation of MCM2, a key DNA replication factor. Collectively, we have characterized a potent and selective DNA-PK inhibitor with promising monotherapy and combinatory therapeutic potential with approved DNA-damaging agents. More importantly, we identified phospho-MCM2 (Ser108) as a potential proximal biomarker of DNA-PK inhibition that warrants further preclinical and clinical evaluation. Significance: ZL-2201, a potent and selective DNA-PK inhibitor, can target tumor models in combination with DNA DSB-inducing agents such as radiation or doxorubicin, with potential to improve recurrent therapies in the clinic.


Subject(s)
DNA-Activated Protein Kinase , Humans , Administration, Oral , Phosphorylation , Animals , DNA-Activated Protein Kinase/antagonists & inhibitors
4.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34546978

ABSTRACT

The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins - caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin - with expression that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. These results support further investigation into the combined use of caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/metabolism , Caveolin 1/metabolism , Cetuximab/therapeutic use , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/drug therapy , SOXB1 Transcription Factors/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Cetuximab/pharmacology , Head and Neck Neoplasms/physiopathology , Humans , Mice
5.
Science ; 374(6563): eabf2911, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591642

ABSTRACT

We outline a framework for elucidating tumor genetic complexity through multidimensional protein-protein interaction maps and apply it to enhancing our understanding of head and neck squamous cell carcinoma. This network uncovers 771 interactions from cancer and noncancerous cell states, including WT and mutant protein isoforms. Prioritization of cancer-enriched interactions reveals a previously unidentified association of the fibroblast growth factor receptor tyrosine kinase 3 with Daple, a guanine-nucleotide exchange factor, resulting in activation of Gαi- and p21-activated protein kinase 1/2 to promote cancer cell migration. Additionally, we observe mutation-enriched interactions between the human epidermal growth factor receptor 3 (HER3) receptor tyrosine kinase and PIK3CA (the alpha catalytic subunit of phosphatidylinositol 3-kinase) that can inform the response to HER3 inhibition in vivo. We anticipate that the application of this framework will be valuable for translating genetic alterations into a molecular and clinical understanding of the underlying biology of many disease areas.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Head and Neck Neoplasms/metabolism , Protein Interaction Maps , Animals , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Female , Head and Neck Neoplasms/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Nude , Microfilament Proteins/metabolism , Mutation , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Xenograft Model Antitumor Assays
6.
Head Neck ; 43(11): 3364-3373, 2021 11.
Article in English | MEDLINE | ID: mdl-34346116

ABSTRACT

BACKGROUND: Tumor models resistant to EGFR tyrosine kinase inhibitors or cisplatin express higher levels of the immune checkpoint molecule PD-L1. We sought to determine whether PD-L1 expression is elevated in head and neck squamous cell carcinoma (HNSCC) models of acquired cetuximab resistance and whether the expression is regulated by bromodomain and extraterminal domain (BET) proteins. METHODS: Expression of PD-L1 was assessed in HNSCC cell line models of acquired cetuximab resistance. Proteolysis targeting chimera (PROTAC)- and RNAi-mediated targeting were used to assess the role of BET proteins. RESULTS: Cetuximab-resistant HNSCC cells expressed elevated PD-L1 compared to cetuximab-sensitive controls. Treatment with the BET inhibitor JQ1, the BET PROTAC MZ1, or RNAi-mediated knockdown of BRD2 decreased PD-L1 expression. Knockdown of BRD2 also reduced the elevated levels of PD-L1 seen in a model of acquired cisplatin resistance. CONCLUSIONS: PD-L1 is significantly elevated in HNSCC models of acquired cetuximab and cisplatin resistance where BRD2 is the primary regulator.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , B7-H1 Antigen/genetics , Cell Line, Tumor , Cetuximab/pharmacology , Drug Resistance, Neoplasm/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Transcription Factors
9.
PLoS One ; 15(1): e0227261, 2020.
Article in English | MEDLINE | ID: mdl-31914141

ABSTRACT

The epidermal growth factor receptor inhibitor cetuximab is the only oncogene-targeted agent that has been FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC). Currently, there are no biomarkers used in the clinic to predict which HNSCC tumors will respond to cetuximab, and even in tumors that regress with treatment, acquired resistance occurs in the majority of cases. Though a number of mechanisms of acquired resistance to cetuximab have been identified in preclinical studies, no therapies targeting these resistance pathways have yet been effectively translated into the clinic. To address this unmet need, we examined the role of the cytokine interleukin 6 (IL-6) in acquired cetuximab resistance in preclinical models of HNSCC. We found that IL-6 secretion was increased in PE/CA-PJ49 cells that had acquired resistance to cetuximab compared to the parental cells from which they were derived. However, addition of exogenous IL-6 to parental cells did not promote cetuximab resistance, and inhibition of the IL-6 pathway did not restore cetuximab sensitivity in the cetuximab-resistant cells. Further examination of the IL-6 pathway revealed that expression of IL6R, which encodes a component of the IL-6 receptor, was decreased in cetuximab-resistant cells compared to parental cells, and that treatment of the cetuximab-resistant cells with exogenous IL-6 did not induce phosphorylation of signal transducer and activator of transcription 3, suggesting that the IL-6 pathway was functionally impaired in the cetuximab-resistant cells. These findings demonstrate that, even if IL-6 is increased in the context of cetuximab resistance, it is not necessarily required for maintenance of the resistant phenotype, and that targeting the IL-6 pathway may not restore sensitivity to cetuximab in cetuximab-refractory HNSCC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/immunology , Head and Neck Neoplasms/drug therapy , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carbazoles , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , Gene Knockdown Techniques , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Phosphorylation , RNA, Small Interfering/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Recombinant Proteins/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology
10.
Oral Oncol ; 95: 35-42, 2019 08.
Article in English | MEDLINE | ID: mdl-31345392

ABSTRACT

OBJECTIVES: Cisplatin is commonly used in the treatment of head and neck squamous cell carcinoma (HNSCC), and the repair of cisplatin-induced DNA damage involves activation of the DNA damage response protein ataxia telangiectasia and Rad3-related (ATR). Resistance to cisplatin therapy exacerbates adverse toxicities and is associated with poor outcomes. Since repair of cisplatin-induced DNA damage contributes to resistance, we hypothesized that inhibition of ATR using AZD6738, a well-tolerated and orally-bioavailable inhibitor, would enhance the sensitivity of HNSCC cells and tumors to cisplatin. MATERIALS AND METHODS: A panel of human papilloma virus-negative (HPV-) and HPV+ HNSCC cell lines were treated with cisplatin in the absence or presence of AZD6738, and effects on cell viability, colony formation, apoptosis signaling, and DNA damage were assessed. The impact of co-treatment with cisplatin plus AZD6738 on the growth of HPV- and HPV+ cell line- and patient-derived xenograft tumors was also examined. RESULTS: Inhibition of ATR with AZD6738 enhanced cisplatin-induced growth inhibition of HNSCC cell lines and tumors, in association with increased apoptosis signaling and DNA damage. Both HPV- and HPV+ models were sensitized to cisplatin by ATR inhibition. CONCLUSION: Inhibition of ATR promotes sensitization to cisplatin in preclinical in vitro and in vivo models of HPV- and HVP+ HNSCC, supporting clinical evaluation of this strategy in this disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Cisplatin/pharmacology , Oropharyngeal Neoplasms/drug therapy , Pyrimidines/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Sulfoxides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/therapeutic use , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Indoles , Mice , Morpholines , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/pathology , Papillomaviridae/isolation & purification , Papillomavirus Infections , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Sulfonamides , Sulfoxides/therapeutic use , Xenograft Model Antitumor Assays
11.
Carcinogenesis ; 40(10): 1179-1190, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31219154

ABSTRACT

In pre-clinical models, co-existence of Human Epidermal Growth Factor Receptor-2 (HER2)-amplification and PI3K catalytic subunit (PIK3CA) mutations results in aggressive, anti-HER2 therapy-resistant breast tumors. This is not always reflected in clinical setting. We speculated that the complex interaction between the HER2 and PIK3CA oncogenes is responsible for such inconsistency. We performed series of biochemical, molecular and cellular assays on genetically engineered isogenic mammary epithelial cell lines and breast cancer cells expressing both oncogenes. In vitro observations were validated in xenografts models. We showed that H1047R, one of the most common PIK3CA mutations, is responsible for endowing a senescence-like state in mammary epithelial cells overexpressing HER2. Instead of imposing a permanent growth arrest characteristic of oncogene-induced senescence, the proteome secreted by the mutant cells promotes stem cell enrichment, angiogenesis, epithelial-to-mesenchymal transition, altered immune surveillance and acute vulnerability toward HSP90 inhibition. We inferred that the pleiotropism, as observed here, conferred by the mutated oncogene, depending on the host microenvironment, contributes to conflicting pre-clinical and clinical characteristics of HER2+, mutated PIK3CA-bearing tumor cells. We also came up with a plausible model for evolution of breast tumors from mammary epithelial cells harboring these two molecular lesions.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Cellular Senescence , Class I Phosphatidylinositol 3-Kinases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mutation , Receptor, ErbB-2/metabolism , Animals , Apoptosis , Breast/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/genetics , Epithelial-Mesenchymal Transition , Female , HSP90 Heat-Shock Proteins/genetics , Humans , Mice , Mice, Nude , Receptor, ErbB-2/genetics
16.
J Exp Med ; 216(2): 419-427, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30683736

ABSTRACT

PIK3CA is the most commonly altered oncogene in head and neck squamous cell carcinoma (HNSCC). We evaluated the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on survival in a PIK3CA-characterized cohort of 266 HNSCC patients and explored the mechanism in relevant preclinical models including patient-derived xenografts. Among subjects with PIK3CA mutations or amplification, regular NSAID use (≥6 mo) conferred markedly prolonged disease-specific survival (DSS; hazard ratio 0.23, P = 0.0032, 95% CI 0.09-0.62) and overall survival (OS; hazard ratio 0.31, P = 0.0043, 95% CI 0.14-0.69) compared with nonregular NSAID users. For PIK3CA-altered HNSCC, predicted 5-yr DSS was 72% for NSAID users and 25% for nonusers; predicted 5-yr OS was 78% for regular NSAID users and 45% for nonregular users. PIK3CA mutation predicted sensitivity to NSAIDs in preclinical models in association with increased systemic PGE2 production. These findings uncover a biologically plausible rationale to implement NSAID therapy in PIK3CA-altered HNSCC.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Carcinoma, Squamous Cell , Class I Phosphatidylinositol 3-Kinases , Head and Neck Neoplasms , Mutation , Neoplasm Proteins , Adult , Aged , Animals , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease-Free Survival , Female , Head and Neck Neoplasms/enzymology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/therapy , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Survival Rate , Xenograft Model Antitumor Assays
17.
Cancer Res ; 78(15): 4331-4343, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29792310

ABSTRACT

Cetuximab, the FDA-approved anti-EGFR antibody for head and neck squamous cell carcinoma (HNSCC), has displayed limited efficacy due to the emergence of intrinsic and acquired resistance. We and others have demonstrated that cetuximab resistance in HNSCC is driven by alternative receptor tyrosine kinases (RTK), including HER3, MET, and AXL. In an effort to overcome cetuximab resistance and circumvent toxicities associated with the administration of multiple RTK inhibitors, we sought to identify a common molecular target that regulates expression of multiple RTK. Bromodomain-containing protein-4 (BRD4) has been shown to regulate the transcription of various RTK in the context of resistance to PI3K and HER2 inhibition in breast cancer models. We hypothesized that, in HNSCC, targeting BRD4 could overcome cetuximab resistance by depleting alternative RTK expression. We generated independent models of cetuximab resistance in HNSCC cell lines and interrogated their RTK and BRD4 expression profiles. Cetuximab-resistant clones displayed increased expression and activation of several RTK, such as MET and AXL, as well as an increased percentage of BRD4-expressing cells. Both genetic and pharmacologic inhibition of BRD4 abrogated cell viability in models of acquired and intrinsic cetuximab resistance and was associated with a robust decrease in alternative RTK expression by cetuximab. Combined treatment with cetuximab and bromodomain inhibitor JQ1 significantly delayed acquired resistance and RTK upregulation in patient-derived xenograft models of HNSCC. These findings indicate that the combination of cetuximab and bromodomain inhibition may be a promising therapeutic strategy for patients with HNSCC.Significance: Inhibition of bromodomain protein BRD4 represents a potential therapeutic strategy to circumvent the toxicities and financial burden of targeting the multiple receptor tyrosine kinases that drive cetuximab resistance in HNSCC and NSCLC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4331/F1.large.jpg Cancer Res; 78(15); 4331-43. ©2018 AACR.


Subject(s)
Cetuximab/pharmacology , Drug Resistance, Neoplasm/genetics , Nuclear Proteins/genetics , Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Survival/genetics , Head and Neck Neoplasms/genetics , Humans , Receptor, ErbB-2/genetics , Signal Transduction/genetics , Transcription Factors/genetics
18.
Cancer Res ; 78(9): 2383-2395, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29440171

ABSTRACT

Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.


Subject(s)
Head and Neck Neoplasms/etiology , Head and Neck Neoplasms/metabolism , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-3/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Disease Models, Animal , Gene Knockdown Techniques , Head and Neck Neoplasms/pathology , Humans , Phosphoinositide-3 Kinase Inhibitors , Protein Binding , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 23(20): 6138-6150, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28751448

ABSTRACT

Purpose:FGFR1 amplification occurs in approximately 15% of estrogen receptor-positive (ER+) human breast cancers. We investigated mechanisms by which FGFR1 amplification confers antiestrogen resistance to ER+ breast cancer.Experimental Design: ER+ tumors from patients treated with letrozole before surgery were subjected to Ki67 IHC, FGFR1 FISH, and RNA sequencing (RNA-seq). ER+/FGFR1-amplified breast cancer cells, and patient-derived xenografts (PDX) were treated with FGFR1 siRNA or the FGFR tyrosine kinase inhibitor lucitanib. Endpoints were cell/xenograft growth, FGFR1/ERα association by coimmunoprecipitation and proximity ligation, ER genomic activity by ChIP sequencing, and gene expression by RT-PCR.Results: ER+/FGFR1-amplified tumors in patients treated with letrozole maintained cell proliferation (Ki67). Estrogen deprivation increased total and nuclear FGFR1 and FGF ligands expression in ER+/FGFR1-amplified primary tumors and breast cancer cells. In estrogen-free conditions, FGFR1 associated with ERα in tumor cell nuclei and regulated the transcription of ER-dependent genes. This association was inhibited by a kinase-dead FGFR1 mutant and by treatment with lucitanib. ChIP-seq analysis of estrogen-deprived ER+/FGFR1-amplified cells showed binding of FGFR1 and ERα to DNA. Treatment with fulvestrant and/or lucitanib reduced FGFR1 and ERα binding to DNA. RNA-seq data from FGFR1-amplified patients' tumors treated with letrozole showed enrichment of estrogen response and E2F target genes. Finally, growth of ER+/FGFR1-amplified cells and PDXs was more potently inhibited by fulvestrant and lucitanib combined than each drug alone.Conclusions: These data suggest the ERα pathway remains active in estrogen-deprived ER+/FGFR1-amplified breast cancers. Therefore, these tumors are endocrine resistant and should be candidates for treatment with combinations of ER and FGFR antagonists. Clin Cancer Res; 23(20); 6138-50. ©2017 AACR.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Transcription, Genetic , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Mice , Molecular Targeted Therapy , Neoplasm Staging , Protein Kinase Inhibitors/pharmacology , Protein Transport , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
20.
Sci Transl Med ; 9(392)2017 05 31.
Article in English | MEDLINE | ID: mdl-28566428

ABSTRACT

Mutant RAS has remained recalcitrant to targeted therapy efforts. We demonstrate that combined treatment with poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors and mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors evokes unanticipated, synergistic cytotoxic effects in vitro and in vivo in multiple RAS mutant tumor models across tumor lineages where RAS mutations are prevalent. The effects of PARP and MEK inhibitor combinations are independent of BRCA1/2 and p53 mutation status, suggesting that the synergistic activity is likely to be generalizable. Synergistic activity of PARP and MEK inhibitor combinations in RAS mutant tumors is associated with (i) induction of BIM-mediated apoptosis, (ii) decrease in expression of components of the homologous recombination DNA repair pathway, (iii) decrease in homologous recombination DNA damage repair capacity, (iv) decrease in DNA damage checkpoint activity, (v) increase in PARP inhibitor-induced DNA damage, (vi) decrease in vascularity that could increase PARP inhibitor efficacy by inducing hypoxia, and (vii) elevated PARP1 protein, which increases trapping activity of PARP inhibitors. Mechanistically, enforced expression of FOXO3a, which is a target of the RAS/MAPK pathway, was sufficient to recapitulate the functional consequences of MEK inhibitors including synergy with PARP inhibitors. Thus, the ability of mutant RAS to suppress FOXO3a and its reversal by MEK inhibitors accounts, at least in part, for the synergy of PARP and MEK inhibitors in RAS mutant tumors. The rational combination of PARP and MEK inhibitors warrants clinical investigation in patients with RAS mutant tumors where there are few effective therapeutic options.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Genes, ras , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Forkhead Box Protein O3/metabolism , Homologous Recombination/drug effects , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL