Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 2(1): 151, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434092

ABSTRACT

BACKGROUND: People living with chronic disease, particularly seniors (≥60 years old), made up of most severe symptom and death cases among SARS-CoV-2 infected patients. However, they are lagging behind in the national COVID-19 vaccination campaign in China due to the uncertainty of vaccine safety and effectiveness. Safety and immunogenicity data of COVID-19 vaccines in people with underlying medical conditions are needed to address the vaccine hesitation in this population. METHODS: We included participants (≥40 years old) who received two doses of CoronaVac inactivated vaccines (at a 3-5 week interval) and were healthy or had at least one of 6 common chronic diseases. The incidence of adverse events after vaccination was monitored. Vaccine immunogenicity was studied by determining neutralizing antibodies and SARS-CoV-2-specific T cell responses post vaccination. RESULTS: Here we show that chronic diseases are associated with a higher rate of mild fatigue following the first dose of CoronaVac. By day 14-28 post vaccination, the neutralizing antibody level shows no significant difference between disease groups and healthy controls, except for people with coronary artery disease (p = 0.0287) and chronic respiratory disease (p = 0.0416), who show moderate reductions. Such differences diminish by day 90 and 180. Most people show detectable SARS-CoV-2-specific T cell responses at day 90 and day 180 without significant differences between disease groups and healthy controls. CONCLUSIONS: Our results highlight the comparable safety, immunogenicity and cellular immunity memory of CoronaVac in seniors and people living with chronic diseases. This data should reduce vaccine hesitancy in this population.


People living with chronic diseases, particularly those over the age of 60, are more likely to have severe symptoms and die following SARS-CoV-2 infection. However, many have not been vaccinated during the national COVID-19 vaccination campaign in China due to concerns about vaccine safety and effectiveness. Here we show that the inactivated COVID-19 vaccine, CoronaVac, is as safe in older people with chronic diseases as it is for healthy people. Also, only slightly differences are seen in the immune response of people with diseases compared to healthy people. Overall, our results highlight that the CoronaVac vaccine is safe and effective in people living with chronic diseases.

3.
Front Genet ; 13: 820464, 2022.
Article in English | MEDLINE | ID: mdl-35281804

ABSTRACT

Skeletal muscle, the main source of animal meat products, contains muscle fiber as a key unit. It is well known that transformation takes place between different types of muscle fibers, however, the conversion mechanism is not clear. In a previous study, our lab has demonstrated that there is a decrease in type I muscle fibers and an increase in type IIB muscle fibers in skeletal muscle of myostatin gene-edited Meishan pigs. Very interestingly, we observed the down regulation of miR-208b expression and an increase in expression the predicted target gene Mettl8 (Methyltransferase like 8) in skeletal muscle of MSTN gene-edited Meishan pigs. These results reveal that there is a potential connection between the conversion of skeletal muscle fiber types and miR-208b and Mettl8 expression. In this study, we first explored the expression patterns of miR-208b and Mettl8 in skeletal muscle in Meishan pigs; and then C2C12 cells were used to simulate the development and maturation of muscle fibers. Our results indicated that Myh4 expression level decreased and Myh7 expression level increased following overexpression of miR-208b in C2C12 cells. We therefore speculate that miR-208b can promote the conversion of fast-twitch fibers to slow-twitch fibers. The targeting relationship between Mettl8 and miR-208b was confirmed by results obtained using dual luciferase assay, RT-qPCR, and WB analysis. Following the transfection of Mettl8 siRNA into C2C12 cells, we observed that Mettl8 expression decreased significantly while Myh7 expression increased and Myh4 expression decreased, indicating that Mettl8 promotes the conversion of slow muscle fibers to fast muscle fibers. Additionally, changes in skeletal muscle fiber types are observed in those mice where miR-208b and Mettl8 genes are knocked out. The miR-208b knockout inhibits the formation of slow muscle fibers, and the Mettl8 knockout inhibits the formation of fast muscle fibers. In conclusion, our research results show that miR-208b regulates the conversion of different muscle fiber types by inhibiting Mettl8 expression.

4.
J Proteomics ; 213: 103628, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31881351

ABSTRACT

Embryonic development of skeletal muscle is a complex process that is important to the growth of skeletal muscle after birth. However, the mechanisms by which skeletal muscle growth and development in embryonic phase remain unclear. We have previously produced myostatin-knockout (MKO) Meishan pigs with double-muscle (DM) phenotype via zinc finger nucleases (ZFN) technology. To further investigate the molecular mechanisms involved in skeletal muscle growth and development, in this study, we performed an integrated analysis of transcriptome and proteome in longissimus dorsi muscle from myostatin wild type (MWT) and MKO pigs on 65 days post coitus. Results showed that, compared with MWT group, there were 438 differentially expressed genes (DEGs) and 66 differentially expressed proteins (DEPs) in MKO group. These DEGs and DEPs were mainly enriched in signaling pathways that are involved in skeletal muscle growth and development, glucose metabolism and apoptosis. Furthermore, we identified two key genes, Troponin T 1 (TNNT1) and Myosin regulatory light chain 9 (MYL9), which showed significant changes in both mRNA and protein levels with the similar changing trends in MKO group. It is thus speculated that TNNT1 and MYL9 may play an important role in skeletal muscle growth and development. SIGNIFICANCE: Our study analyzed some important regulatory genes and proteins during skeletal muscle growth and development, our results provided (1) a new insight to further understanding of the molecular mechanisms by which growth and development are regulated in porcine skeletal muscle, and (2) some possible molecular makers for improvement of meat quality in the animal husbandry and diagnosis of human muscle diseases in medicine.


Subject(s)
Myostatin , Proteome , Transcriptome , Animals , Gene Expression Profiling , Muscle Development/genetics , Muscle, Skeletal , Myostatin/genetics , Proteome/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...