Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(13): 5598-5608, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888427

ABSTRACT

Accurately describing long-range interactions is a significant challenge in molecular dynamics (MD) simulations of proteins. High-quality long-range potential is also an important component of the range-separated machine learning force field. This study introduces a comprehensive asymptotic parameter database encompassing atomic multipole moments, polarizabilities, and dispersion coefficients. Leveraging active learning, our database comprehensively represents protein fragments with up to 8 heavy atoms, capturing their conformational diversity with merely 78,000 data points. Additionally, the E(3) neural network (E3NN) is employed to predict the asymptotic parameters directly from the local geometry. The E3NN models demonstrate exceptional accuracy and transferability across all asymptotic parameters, achieving an R2 of 0.999 for both protein fragments and 20 amino acid dipeptide test sets. The long-range electrostatic and dispersion energies can be obtained using the E3NN-predicted parameters, with an error of 0.07 and 0.02 kcal/mol, respectively, when compared to symmetry-adapted perturbation theory (SAPT). Therefore, our force fields demonstrate the capability to accurately describe long-range interactions in proteins, paving the way for next-generation protein force fields.


Subject(s)
Molecular Dynamics Simulation , Neural Networks, Computer , Proteins , Proteins/chemistry , Static Electricity , Protein Conformation , Thermodynamics , Dipeptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL