Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786141

ABSTRACT

This study investigated the effects of an antibiotic cocktail on intestinal microbial composition, mechanical barrier structure, and immune functions in early broilers. One-day-old healthy male broiler chicks were treated with a broad-spectrum antibiotic cocktail (ABX; neomycin, ampicillin, metronidazole, vancomycin, and kanamycin, 0.5 g/L each) or not in drinking water for 7 and 14 days, respectively. Sequencing of 16S rRNA revealed that ABX treatment significantly reduced relative Firmicutes, unclassified Lachnospiraceae, unclassified Oscillospiraceae, Ruminococcus torques, and unclassified Ruminococcaceae abundance in the cecum and relative Firmicutes, Lactobacillus and Baccillus abundance in the ileum, but significantly increased richness (Chao and ACE indices) and relative Enterococcus abundance in the ileum and cecum along with relatively enriched Bacteroidetes, Proteobacteria, Cyanobacteria, and Enterococcus levels in the ileum following ABX treatment for 14 days. ABX treatment for 14 days also significantly decreased intestinal weight and length, along with villus height (VH) and crypt depth (CD) of the small intestine, and remarkably increased serum LPS, TNF-α, IFN-γ, and IgG levels, as well as intestinal mucosa DAO and MPO activity. Moreover, prolonged use of ABX significantly downregulated occludin, ZO-1, and mucin 2 gene expression, along with goblet cell numbers in the ileum. Additionally, chickens given ABX for 14 days had lower acetic acid, butyric acid, and isobutyric acid content in the cecum than the chickens treated with ABX for 7 days and untreated chickens. Spearman correlation analysis found that those decreased potential beneficial bacteria were positively correlated with gut health-related indices, while those increased potential pathogenic strains were positively correlated with gut inflammation and gut injury-related parameters. Taken together, prolonged ABX application increased antibiotic-resistant species abundance, induced gut microbiota dysbiosis, delayed intestinal morphological development, disrupted intestinal barrier function, and perturbed immune response in early chickens. This study provides a reliable lower-bacteria chicken model for further investigation of the function of certain beneficial bacteria in the gut by fecal microbiota transplantation into germ-free or antibiotic-treated chickens.

2.
Poult Sci ; 103(5): 103655, 2024 May.
Article in English | MEDLINE | ID: mdl-38537402

ABSTRACT

To develop effective antibiotics alternatives is getting more and more important to poultry healthy production. The study investigated the effects of a microencapsulated essential oils and organic acids preparation (EOA) on growth performance, slaughter performance, nutrient digestibility and intestinal microenvironment of broilers. A total of 624 1-day-old male Arbor Acres broilers were randomly divided into 6 groups including the control group (T1) fed with basal diet, the antibiotic group (T2) supplemented with basal diet with 45 mg/kg bacitracin methylene disalicylate (BMD), and 4 inclusion levels of EOA-treated groups (T3, T4, T5, T6 groups) chickens given basal diet with 200, 400, 600, and 800 mg EOA/kg of diet, respectively. Results showed that compared with the control, the 200 mg/kg EOA group increased average daily gain (ADG) and average body weight (ABW) during the early stage (P < 0.05). EOA addition decreased crypt depth of the ileum (P < 0.05), but villus height to crypt depth ratio was increased by EOA addition at 200 and 400 mg/kg at d 21 (P < 0.05). Compared with the control, dietary addition EOA at 200, 400 and 600 mg/kg increased the lipase activity in the duodenum at d 21 (P < 0.05). Increased lactic acid bacteria population was found in cecal digesta of the 400 mg/kg EOA group at d 21 (P < 0.05), and higher concentration of butyric acid level was observed in cecal digesta at d 21 and d 42 in the 200 mg/kg EOA group compared with the control (P < 0.05). RT-PCR analysis found that dietary EOA addition decreased the gene expression of IL-1ß, COX-2 and TGF-ß4 in the ileum at d 21 (P < 0.05), while only the 200 mg/kg EOA increased the gene expression of IL-10, TGF-ß4, Claudin-1, ZO-1, CATH-1, CATH-3, AvBD-1, AvBD-9 and AvBD-12 in the ileum at d 42 (P < 0.05) compared with the control. In summary, adding 200 mg/kg and 400 mg/kg of the EOA to the diet could improve the growth performance and intestinal microenvironment through improving intestinal morphology, increasing digestive enzymes activity and cecal lactic acid bacteria abundance and butyric acid content, improving intestinal barrier function as well as maintaining intestinal immune homeostasis. The improving effect induced by EOA addition in the early growth stage was better than that in the later growth stage. Overall, the EOA product might be an effective antibiotic alternative for broiler industry.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Oils, Volatile , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Male , Diet/veterinary , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Digestion/drug effects , Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements/analysis , Intestines/drug effects , Intestines/anatomy & histology , Random Allocation , Dose-Response Relationship, Drug , Drug Compounding/veterinary , Nutrients/metabolism
3.
J Anim Sci Biotechnol ; 14(1): 95, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37391807

ABSTRACT

BACKGROUND: Reducing Salmonella infection in broiler chickens by using effective and safe alternatives to antibiotics is vital to provide safer poultry meat and minimize the emergence of drug-resistant Salmonella and the spread of salmonellosis to humans. This study was to first evaluate the protective efficacy of feeding coated essential oils and organic acids mixture (EOA) on broiler chickens infected with Salmonella Enteritidis (S. Enteritidis, SE), and then its action mechanism was further explored. METHODS: A total of 480 1-day-old Arbor Acres male chickens were randomly assigned into five treatments with six replicates, including non-challenged control fed with basal diet (A), SE-challenged control (B), and SE-infected birds fed a basal diet with 300 mg/kg of EOA (BL), 500 mg/kg of EOA (BM) and 800 mg/kg of EOA (BH), respectively. All birds on challenged groups were infected with Salmonella Enteritidis on d 13.  RESULTS: Feeding EOA showed a reversed ability on negative effects caused by SE infection, as evidenced by decreasing the feed conversion rate (FCR) and the ratio of villus height to crypt depth (VH/CD) (P < 0.05), obviously decreasing intestinal and internal organs Salmonella load along with increasing cecal butyric acid-producing bacteria abundance (P < 0.05). Moreover, supplemental different levels of EOA notably up-regulated claudin-1 (CLDN-1), occludin (OCLN), zonula occludens-1 (ZO-1), mucin-2 (MUC-2), fatty acid binding protein-2 (FABP-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differential protein-88 (MyD88) and interleukin-6 (IL-6) mRNA levels in the ileum of the infected chickens after challenge, whereas down-regulated toll-like receptor-4 (TLR-4) mRNA levels (P < 0.05). Linear discriminant analysis combined effect size measurements analysis (LEfSe) showed that the relative abundance of g_Butyricicoccus, g_Anaerotruncus and g_unclassified_f_Bacillaceae significantly was enriched in infected birds given EOA. Also, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis showed that alpha-linolenic acid metabolism, fatty acid metabolism and biosynthesis of unsaturated fatty acids were significantly enriched in the EOA group. CONCLUSION: Our data suggest that the essential oils and organic acids mixture can be used as an effective strategy to ameliorate and alleviate Salmonella Enteritidis infection in broilers.

4.
Antioxidants (Basel) ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38247473

ABSTRACT

The zoonotic pathogens Salmonella spp. infection disrupted intestinal epithelial barrier function and induced local gastroenteritis and systemic inflammation in humans and animals. Sophy ß-glucan, a water-soluble ß-1,3/1,6-glucan synthesized from the black yeast Aureobasidium pullulans, was reported with immune-regulatory, anti-inflammatory, and anti-infective properties. Here, we investigated the protective role of sophy ß-glucan on Salmonella enterica serotype Enteritidis (SE)-challenged Caco-2 cells monolayer and explored underlying action mechanisms. The results showed that pretreatment with sophy ß-glucan blocked the adhesion and invasion of SE onto Caco-2 cells along with alleviating SE-induced epithelial barrier injury, as evidenced by increased trans-epithelial electrical resistance, decreased fluorescently-labeled dextran 4 flux permeability, and an enhanced Claudin-4 protein level in the SE-stimulated Caco-2 cell monolayer. Moreover, treatment with ß-glucan down-regulated pro-inflammatory factors (IL-1ß, IL-8, and TNF-α) while up-regulating anti-inflammatory factors IL-10 at mRNA and protein levels in SE-infected Caco-2 cells. Furthermore, sophy ß-glucan strengthened the anti-oxidative capacity of Caco-2 monolayers cells by elevating T-AOC and SOD activity and inhibiting MDA production defending SE. Together, our data showed that sophy ß-glucan could prevent intestinal epithelial injury induced by SE, possibly by exerting anti-oxidant and anti-inflammatory properties, and it might be helpful for controlling SE infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...