Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mLife ; 3(1): 119-128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38827506

ABSTRACT

Saccharolobus islandicus REY15A represents one of the very few archaeal models with versatile genetic tools, which include efficient genome editing, gene silencing, and robust protein expression systems. However, plasmid vectors constructed for this crenarchaeon thus far are based solely on the pRN2 cryptic plasmid. Although this plasmid coexists with pRN1 in its original host, early attempts to test pRN1-based vectors consistently failed to yield any stable host-vector system for Sa. islandicus. We hypothesized that this failure could be due to the occurrence of CRISPR immunity against pRN1 in this archaeon. We identified a putative target sequence in orf904 encoding a putative replicase on pRN1 (target N1). Mutated targets (N1a, N1b, and N1c) were then designed and tested for their capability to escape the host CRISPR immunity by using a plasmid interference assay. The results revealed that the original target triggered CRISPR immunity in this archaeon, whereas all three mutated targets did not, indicating that all the designed target mutations evaded host immunity. These mutated targets were then incorporated into orf904 individually, yielding corresponding mutated pRN1 backbones with which shuttle plasmids were constructed (pN1aSD, pN1bSD, and pN1cSD). Sa. islandicus transformation revealed that pN1aSD and pN1bSD were functional shuttle vectors, but pN1cSD lost the capability for replication. These results indicate that the missense mutations in the conserved helicase domain in pN1c inactivated the replicase. We further showed that pRN1-based and pRN2-based vectors were stably maintained in the archaeal cells either alone or in combination, and this yielded a dual plasmid system for genetic study with this important archaeal model.

2.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955649

ABSTRACT

Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis of Cmr4 conserved amino acids in Saccharolobus islandicus, and this revealed that Cmr4α RNase-dead (dCmr4α) mutation yields cell dormancy/death. We also found that plasmid-borne expression of dCmr4α in the wild-type strain strongly reduced plasmid transformation efficiency, and deletion of CRISPR arrays in the host genome reversed the dCmr4α inhibition. Expression of dCmr4α also strongly inhibited plasmid transformation with Cmr2αHD and Cmr2αPalm mutants, but the inhibition was diminished in Cmr2αHD,Palm. Since dCmr4α-containing effectors lack spatiotemporal regulation, this allows an everlasting interaction between crRNA and cellular RNAs to occur. As a result, some cellular RNAs, which are not effective in mediating immunity due to the presence of spatiotemporal regulation, trigger autoimmunity of the Cmr-α system in the S. islandicus cells expressing dCmr4α. Together, these results pinpoint the crucial importance of tgRNA cleavage in autoimmunity avoidance and in the regulation of immunization of type III systems.


Subject(s)
CRISPR-Associated Proteins , Sulfolobus , Autoimmunity/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , RNA/genetics , RNA Cleavage , Sulfolobus/genetics
3.
Acta Biomater ; 33: 153-65, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26804205

ABSTRACT

A series of synthesized Trp-containing antimicrobial peptides showed significantly different antimicrobial activity against Gram-negative bacteria despite having similar components and amino acid sequences and the same net positive charge and hydrophobicity. Lipopolysaccharide (LPS) in the outer membrane is a permeability barrier to prevent antimicrobial peptides from crossing into Gram-negative bacteria. We investigated the interaction of five Trp-containing peptides, I1W, I4W, L5W, L11W and L12W, with LPS using circular dichroism (CD), IR spectroscopy, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta-potential measurements and confocal laser scanning microscopy, to address whether bacterial LPS is responsible for the different susceptibilities of Gram-negative bacteria to Trp-containing peptides. Our data indicate that I1W and I4W penetrated the LPS layer and killed Gram-negative bacteria by a "self-promoted uptake" pathway in which the peptides first approach LPS by electrostatic forces and then dissociate LPS micelle. This process results in disorganization of the LPS leaflet and promotes the ability of the peptide to cross the outer membrane into the inner membrane and disrupt the cytoplasmic membrane. Although L5W, L11W and L12W strongly bind to LPS bilayers and depolarize bacterial cytoplasmic membranes, similar to I1W and I4W, they are unable to destabilize LPS aggregates and traverse through the tightly packed LPS molecules. This study increases our understanding of the mechanism of action of these peptides in the LPS outer membrane and will help in the development of a potent broad-spectrum antibiotic for future therapeutic purposes. STATEMENT OF SIGNIFICANCE: Tryptophan (Trp) residues show a strong preference for the interfacial region of biological membranes, and this property endows Trp-containing peptides with the unique ability to interact with the surface of bacterial cell membranes. In this manuscript, we report the membrane interaction of Trp-containing peptide to address whether bacterial LPS is responsible for the different susceptibilities of Gram-negative bacteria to Trp-containing peptides. Based on the data collected, we propose a molecular mechanism for the peptide-LPS interactions that allows the peptides to traverse or prevents them from transversing the LPS layer and the target inner membrane. The data should help in the development of a potent broad-spectrum antibiotic for future therapeutic purposes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endotoxins/metabolism , Escherichia coli/drug effects , Lipopolysaccharides/pharmacology , Neutralization Tests , Peptides/pharmacology , Tryptophan/pharmacology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Cell Death/drug effects , Cell Membrane Permeability/drug effects , Circular Dichroism , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Peptides/chemistry , RAW 264.7 Cells , Spheroplasts/drug effects , Thermodynamics
4.
J Antibiot (Tokyo) ; 67(5): 361-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24496141

ABSTRACT

Tryptophan (Trp) residues reportedly exhibit a strong membrane-disruptive activity, and this property endows Trp-containing antimicrobial peptides (AMPs) with a unique ability to interact with the surface of bacterial cell membranes, possibly improving antimicrobial properties. In this study, we investigated the influence of Trp residues engineered to have a distinct preference for the interface region of lipid bilayers on antimicrobial activity. We designed two Trp-substituted AMPs (I1WL5W and I4WL5W) by replacing Ile or Leu residues with two Trp residues at different positions in the L-K6 peptide, and determined their antimicrobial activity and mechanism of membrane action. Both I1WL5W and I4WL5W exhibited significantly higher antimicrobial activity and lower cytotoxicity against Gram-negative and Gram-positive bacteria compared with L-K6. The Trp-substituted peptides had a disordered structure in aqueous solution and adopted an α-helical structure in solutions of 50% trifluoroethanol/water and 30 mM SDS. I1WL5W and I4WL5W caused a significant leakage of calcein from liposomes containing membranes that mimicked those of Escherichia coli and Staphylococcus aureus. Scanning electron microscopy analysis suggested that I1WL5W and I4WL5W killed bacteria by disrupting bacterial cell membranes. Furthermore, fluorescence and quenching data from a variety of liposomes, which mimic different cell membranes, indicated that the Trp-substituted peptides could insert into the lipid bilayers and induce blue shifts in the emission spectra of the Trp residues. I1WL5W and I4WL5W were also less susceptible to acrylamide or KI quenchers. The current work may be important for designing novel Trp-containing peptides exhibiting strong antimicrobial abilities by penetrating bacterial membranes.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Lipid Bilayers/pharmacology , Peptides/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Circular Dichroism , Drug Design , Fluoresceins/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis/drug effects , Humans , In Vitro Techniques , Kinetics , Liposomes/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Peptides/chemical synthesis , Spectrometry, Fluorescence , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...