Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Reprod Sci ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218837

ABSTRACT

Zinc finger E-box binding homeobox 1 (ZEB1) promotes epithelial-mesenchymal transition (EMT) in carcinogenesis, but its role in embryo implantation has not yet been well studied. In the present study we evaluated the hypothesis that ZEB1-induced EMT is essential for embryo implantation in vivo. Endometrial epithelium from female Kunming mice (non-pregnant, and pregnant from day 2.5 to 6.5) were collected for assessment of mRNA/protein expression of ZEB1, and EMT markers E-cadherin and vimentin, by employment of real-time quantitative reverse transcription PCR, Western blot, and immunohistochemical staining. To test if knockdown of ZEB1 affects embryo implantation in vivo, mice received intrauterine injection of shZEB1 before the number of embryos implanted was counted. The results showed that, ZEB1 was highly expressed at both mRNA and protein levels in the mouse endometrium on day 4.5 of pregnancy, paralleled with down-regulated E-cadherin and up-regulated vimentin expression (P < 0.05). Intrauterine injection of shZEB1 markedly suppressed embryo implantation in mice (P < 0.01). Conclusively, the present work demonstrated that ZEB1 is essential for embryo implantation under in vivo condition, and is possibly due to its effect on modulation of endometrial receptivity through EMT.

2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-39083023

ABSTRACT

The last two decades have seen nitrogen/iron-transforming bacteria at the forefront of new biogeochemical discoveries, such as anaerobic ammonium oxidation coupled to ferric iron reduction (feammox) and lithoautotrophic nitrate-reducing ferrous iron-oxidation (NRFeOx). These emerging findings continue to expand our knowledge of the nitrogen/iron cycle in nature and also highlight the need to re-understand the functional traits of the microorganisms involved. Here, as a proof-of-principle, we report compelling evidence for the capability of an NRFeOx enrichment culture to catalyze the feammox process. Our results demonstrate that the NRFeOx culture predominantly oxidizes NH4+ to nitrogen gas, by reducing both chelated nitrilotriacetic acid (NTA)-Fe(III) and poorly soluble Fe(III)-bearing minerals (γ-FeOOH) at pH 4.0 and 8.0, respectively. In the NRFeOx culture, Fe(II)-oxidizing bacteria of Rhodanobacter and Fe(III)-reducing bacteria of unclassified_Acidobacteriota coexisted. Their relative abundances were dynamically regulated by the supplemented iron sources. Metagenomic analysis revealed that the NRFeOx culture contained a complete set of denitrifying genes along with hao genes for ammonium oxidation. Additionally, numerous genes encoding extracellular electron transport-associated proteins or their homologs were identified, which facilitated the reduction of extracellular iron by this culture. More broadly, this work lightens the unexplored potential of specific microbial groups in driving nitrogen transformation through multiple pathways and highlights the essential role of microbial iron metabolism in the integral biogeochemical nitrogen cycle.


Subject(s)
Ammonium Compounds , Nitrates , Oxidation-Reduction , Nitrates/metabolism , Ammonium Compounds/metabolism , Anaerobiosis , Ferric Compounds/metabolism , Iron/metabolism , Ferrous Compounds/metabolism , Nitrogen/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
3.
Nat Commun ; 15(1): 2670, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531879

ABSTRACT

The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers' pair of minibands can be Z 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers' minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

4.
J Integr Med ; 22(2): 180-187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38519276

ABSTRACT

OBJECTIVE: The efficacy of medications for Parkinson's disease (PD) tend to decline over time, which has a serious impact on patients' health and quality of life. To some extent, traditional Chinese medicine (TCM) can resolve the distressing problem of ineffective dopaminergic medication in PD patients. The purpose of this study was to investigate the attitude, acceptance, and independent predictors of TCM in PD patients admitted to the outpatient department of a tertiary hospital. METHODS: A cross-sectional study of PD patients was conducted in the outpatient department of a large tertiary hospital in Beijing from March 2022 to June 2023. A self-report questionnaire was developed to investigate PD patients' attitudes and acceptance of TCM based on the questionnaire. Multivariate logistic regression analyses were also performed to further clarify the independent predictors influencing patients' adoption of TCM therapy. RESULTS: A total of 397 patients completed the questionnaire, of which 78.09% were willing to be treated with TCM and 21.91% indicated that they were not willing to use TCM. Multifactorial logistic regression analysis showed that several parameters were correlated with a patient's willingness to include TCM in their therapeutic regime. These included education level of a bachelor's degree (odds ratio [OR) = 8.554; 95% confidence interval [CI]: 4.112-17.794; P < 0.001, vs junior high school education), living in an urban setting (OR = 8.022; 95% CI: 4.577-14.060; P < 0.001, vs rural), having other underlying diseases (OR = 5.126; 95% CI: 3.078-8.537; P < 0.001, vs none), having previously used TCM (OR = 3.083; 95% CI: 1.852-5.134; P < 0.001, vs not used), believing that TCM therapy is safe (OR = 3.530; 95% CI: 1.446-8.616; P = 0.006, vs not thought), believing that TCM therapy is effective (OR = 3.859; 95% CI: 1.482-10.047; P = 0.006, vs not understood), and being willing to discuss ongoing TCM therapy with an attending physician (OR = 62.468; 95% CI: 30.350-128.574; P < 0.001, vs not informed). CONCLUSION: This study initially investigated the acceptance, attitude, and independent predictors of TCM use among PD patients. To expand the prevalence of TCM use among patients with PD, we recommend to broadening the public outreach for TCM via contemporary means of Internet and broadcast communication, enhancing access to TCM services in rural communities, and strengthening the communication between doctors and patients. Please cite this article as: Wang P, Hong J, Tang ZQ, Gong BZ, Qi XR, Jiang H, Pan B, Chen Q. The acceptance of traditional Chinese medicine among patients with Parkinson's disease: A hospital survey. J Integr Med. 2024; 22(2): 180-187.


Subject(s)
Medicine, Chinese Traditional , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Cross-Sectional Studies , Quality of Life , Surveys and Questionnaires , Hospitals
5.
Proc Natl Acad Sci U S A ; 121(8): e2316749121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349878

ABSTRACT

We investigate the moiré band structures and the strong correlation effects in twisted bilayer MoTe[Formula: see text] for a wide range of twist angles, employing a combination of various techniques. Using large-scale first-principles calculations, we pinpoint realistic continuum modeling parameters, subsequently deriving the maximally localized Wannier functions for the top three moiré bands. Simplifying our model with reasonable assumptions, we obtain a minimal two-band model, encompassing Coulomb repulsion, correlated hopping, and spin exchange. Our minimal interaction models pave the way for further exploration of the rich many-body physics in twisted MoTe[Formula: see text]. Furthermore, we explore the phase diagrams of the system through Hartree-Fock approximation and exact diagonalization (ED). Our two-band ED analysis underscores significant band-mixing effects in this system, which enlarge the optimal twist angle for fractional quantum anomalous Hall states.

6.
Med Oncol ; 41(1): 32, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150063

ABSTRACT

Prostate cancer is an epithelial malignant tumor occurring in the prostate and is the most common malignant tumor in the male genitourinary system. In recent years, the incidence of prostate cancer in China has shown a trend of sudden increase. The search for new and effective drugs to treat prostate cancer is therefore extremely important.The canonical Wnt/ß-catenin signaling pathway has been shown to be involved in the regulation of tumor proliferation, migration and differentiation. Activation of the canonical Wnt/ß-Catenin signaling pathway in the prostate has oncogenic effects. Drugs targeting the canonical Wnt/ß-catenin signaling pathway have great potential in the treatment of prostate cancer. In this study, we found that Gastrodin could significantly inhibit the proliferation of prostate cancer cell line PC3 and DU145. Oral administration Gastrodin could significantly inhibit the tumor growth of PC3 cells subcutaneously injected. Gastrodin has an inhibitory effect on canonical Wnt/ß-Catenin signaling pathway in Prostate cancer, and this inhibitory effect can be abolished by Wnt/ß-Catenin agonist LiCl. These findings raise the possibility that Gastrodin can be used in the treatment of Prostate cancer by targeting canonical Wnt/ß-Catenin signaling pathway.


Subject(s)
Carcinoma , Prostatic Neoplasms , Male , Humans , Wnt Signaling Pathway , Prostatic Neoplasms/drug therapy , Benzyl Alcohols/pharmacology , Cell Proliferation
7.
Environ Res ; 238(Pt 2): 117237, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37793587

ABSTRACT

The biofilm sequencing batch reactor (BSBR) process has higher phosphate recovery efficiency and enrichment multiple when the phosphorus load is lower, but the mechanism of phosphate enrichment at low phosphorus load remains unclear. In this study, we operated two BSBR operating under low and high phosphorus load (0.012 and 0.032 kg/(m3·d)) respectively, and used metagenomic, metatranscriptomic, and proteomics methods to analyze the community structure of the phosphorus accumulating organisms (PAOs) in the biofilm, the transcription and protein expression of key functional genes and enzymes, and the metabolism of intracellular polymers. Compared with at high phosphorus load, the BSBR at low phosphorus load have different PAOs and fewer types of PAOs, but in both cases the PAOs must have the PHA, PPX, Pst, and acs genes to become dominant. Some key differences in the metabolism of PAOs from the BSBR with different phosphorus load can be identified as follows. When the phosphorus load is low, the adenosine triphosphoric acid (ATP) and NAD(P)H in the anaerobic stage come from the TCA cycle and the second half of the EMP pathway. The key genes that are upregulated include GAPDH, PGK, ENO, ppdk in the EMP pathway, actP in acetate metabolism, phnB in polyhydroxybutyrate (PHB) synthesis, and aceA, mdh, sdhA, and IDH1 in the TCA cycle. In the meantime, the ccr gene in the PHV pathway is inhibited. As a result, the metabolism of the PAOs features low glycogen with high PHB, Pupt, Prel, and low PHV. That is, more ATP and NAD(P)H flow to phosphorus enrichment metabolism, thus allowing the highly efficient enrichment of phosphorus from low concentration phosphate thanks to the higher abundance of PAOs. The current results provide theoretical support and a new technical option for the enrichment and recovery of low concentrations of phosphate from wastewater by the BSBR process.


Subject(s)
NAD , Proteomics , Phosphorus , Biofilms , Adenosine Triphosphate , Bioreactors , Sewage
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2519-2528, 2023 10.
Article in English | MEDLINE | ID: mdl-37178274

ABSTRACT

Orientin is a flavone isolated from medicinal plants used in traditional Chinese medicine (TCM) that suppresses the growth of cancer cells in vitro. The effects of orientin in hepatoma carcinoma cells remain unknown. The aim of this paper is to investigate the effects of orientin on the viability, proliferation, and migration of hepatocellular carcinoma cells in vitro. In this study, we found that orientin could inhibit the proliferation, migration, and the activation of NF-κB signaling pathway in hepatocellular carcinoma cells. An activator of NF-κB signaling pathway, PMA, could abolish the inhibitory effect of orientin on NF-κB signaling pathway and proliferation and migration of Huh7 cells. These findings raise the possibility that orientin can be used in the treatment of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , NF-kappa B/metabolism , Liver Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor
9.
ChemistryOpen ; 11(10): e202200137, 2022 10.
Article in English | MEDLINE | ID: mdl-36200519

ABSTRACT

The exploration of advanced probes for cancer diagnosis and treatment is of high importance in fundamental research and clinical practice. In comparison with the traditional "always-on" probes, the emerging activatable probes enjoy advantages in promoted accuracy for tumor theranostics by specifically releasing or activating fluorophores at the targeting sites. The main designing principle for these probes is to incorporate responsive groups that can specifically react with the biomarkers (e. g., enzymes) involved in tumorigenesis and progression, realizing the controlled activation in tumors. In this review, we summarize the latest advances in the molecular design and biomedical application of enzyme-responsive organic fluorescent probes. Particularly, the fluorophores can be endowed with ability of generating reactive oxygen species (ROS) to afford the photosensitizers, highlighting the potential of these probes in simultaneous tumor imaging and therapy with rational design. We hope that this review could inspire more research interests in the development of tumor-targeting theranostic probes for advanced biological studies.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/therapeutic use
10.
Lancet Infect Dis ; 22(12): 1756-1768, 2022 12.
Article in English | MEDLINE | ID: mdl-36037823

ABSTRACT

BACKGROUND: This Escherichia coli-produced bivalent HPV 16 and 18 vaccine was well tolerated and effective against HPV 16 and 18 associated high-grade genital lesions and persistent infection in interim analysis of this phase 3 trial. We now report data on long-term efficacy and safety after 66 months of follow-up. METHODS: This phase 3, double-blind, randomised, controlled trial was done in five study sites in China. Eligible participants were women aged 18-45 years, with intact cervix and 1-4 lifetime sexual partners. Women who were pregnant or breastfeeding, had chronic disease or immunodeficiency, or had HPV vaccination history were excluded. Women were stratified by age (18-26 and 27-45 years) and randomly (1:1) allocated by software (block randomisation with 12 codes to a block) to receive three doses of the E coli-produced HPV 16 and 18 vaccine or hepatitis E vaccine (control) and followed-up for 66 months. The primary outcomes were high-grade genital lesions and persistent infection (longer than 6 months) associated with HPV 16 or 18 in the per-protocol susceptible population. This trial was registered with ClinicalTrials.gov, NCT01735006. FINDINGS: Between Nov 22, 2012, and April 1, 2013, 8827 women were assessed for eligibility. 1455 women were excluded, and 7372 women were enrolled and randomly assigned to receive the HPV vaccine (n=3689) or control (n=3683). Vaccine efficacy was 100·0% (95% CI 67·2-100·0) against high-grade genital lesions (0 [0%] of 3310 participants in the vaccine group and 13 [0·4%] of 3302 participants in the control group) and 97·3% (89·9-99·7) against persistent infection (2 [0·1%] of 3262 participants in the vaccine group and 73 [2·2%] of 3271 participants in the control group) in the per-protocol population. Serious adverse events occurred at a similar rate between vaccine (267 [7·2%] of 3691 participants) and control groups (290 [7·9%] of 3681); none were considered related to vaccination. INTERPRETATION: The E coli-produced HPV 16 and 18 vaccine was well tolerated and highly efficacious against HPV 16 and 18 associated high-grade genital lesions and persistent infection and would supplement the global HPV vaccine availability and accessibility for cervical cancer prevention. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Fujian Provincial Project, Fundamental Funds for the Central Universities, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and Xiamen Innovax.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Vaccines, Virus-Like Particle , Female , Humans , Male , Escherichia coli , Uterine Cervical Neoplasms/prevention & control , Human papillomavirus 16 , Double-Blind Method , Immunogenicity, Vaccine
11.
Cell Mol Life Sci ; 79(9): 481, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962235

ABSTRACT

Although 5-methylcytosine (m5C) has been identified as a novel and abundant mRNA modification and associated with energy metabolism, its regulation function in adipose tissue and skeletal muscle is still limited. This study aimed at investigating the effect of mRNA m5C on adipogenesis and myogenesis using Jinhua pigs (J), Yorkshire pigs (Y) and their hybrids Yorkshire-Jinhua pigs (YJ). We found that Y grow faster than J and YJ, while fatness-related characteristics observed in Y were lower than those of J and YJ. Besides, total mRNA m5C levels and expression rates of NSUN2 were higher both in backfat layer (BL) and longissimus dorsi muscle (LDM) of Y compared to J and YJ, suggesting that higher mRNA m5C levels positively correlate with lower fat and higher muscle mass. RNA bisulfite sequencing profiling of m5C revealed tissue-specific and dynamic features in pigs. Functionally, hyper-methylated m5C-containing genes were enriched in pathways linked to impaired adipogenesis and enhanced myogenesis. In in vitro, m5C inhibited lipid accumulation and promoted myogenic differentiation. Furthermore, YBX2 and SMO were identified as m5C targets. Mechanistically, YBX2 and SMO mRNAs with m5C modification were recognized and exported into the cytoplasm from the nucleus by ALYREF, thus leading to increased YBX2 and SMO protein expression and thereby inhibiting adipogenesis and promoting myogenesis, respectively. Our work uncovered the critical role of mRNA m5C in regulating adipogenesis and myogenesis via ALYREF-m5C-YBX2 and ALYREF-m5C-SMO manners, providing a potential therapeutic target in the prevention and treatment of obesity, skeletal muscle dysfunction and metabolic disorder diseases.


Subject(s)
Adipogenesis , RNA-Binding Proteins , Adipogenesis/genetics , Animals , Muscle Development/genetics , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Swine
12.
Hum Vaccin Immunother ; 18(6): 2092363, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35834812

ABSTRACT

A dose-escalation, randomized, double-blind, placebo-controlled phase 1 clinical trial enrolled 145 eligible participants aged 18-55 years in March 2015 in Liuzhou, China. Stratified by age and sex, the participants were randomly assigned to receive either 30, 60, or 90 µg of the HPV-6/11 vaccine (n = 41/40/40) or the parallel placebo vaccine (n = 8/8/8) with a 0/1/6-month dose-escalation schedule. Participants were actively followed-up to record local and systemic AEs occurring within 30 days after each vaccination, and SAEs occurred in 7 months. Blood and urine samples of each participant were collected before and 2 days after the first and third vaccination to determine changes in routine blood, serum biochemical, and urine indexes. Serum HPV-6/11-specific IgG and neutralizing antibody levels at month 7 were analyzed. A total of 79 adverse events were reported, and no SAEs occurred. The incidences of total adverse reactions in the 30 µg, 60 µg, and 90 µg HPV vaccine groups and the control group were 31.7%, 50.0%, 42.5%, and 62.5%, respectively. All but one of the adverse reactions was mild or moderate with grade 1 or 2. No vaccine-related changes with clinical significance were found in paired blood and urine indexes before and after vaccinations. All the participants in the per-protocol set seroconverted at month 7 for both IgG and neutralizing antibodies. The candidate novel Escherichia-coli-produced bivalent HPV-6/11 vaccine has been preliminarily proven to be well tolerated and with robust immunogenicity in a phase 1 clinical study, supporting further trials with larger sample size. The study has been registered at ClinicalTrials.gov (NCT02405520).


Subject(s)
Human Papillomavirus Viruses , Papillomavirus Vaccines , Humans , Double-Blind Method , Antibodies, Neutralizing , Immunoglobulin G , Escherichia coli , Immunogenicity, Vaccine , Antibodies, Viral
13.
Ecotoxicol Environ Saf ; 234: 113343, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35259594

ABSTRACT

The responses of anammox consortia to typical antibiotics sulfadiazine (SDZ) and chlortetracycline (CTC) were evaluated on the aspects of general performance, microbial activity, diversity and abundance of antibiotic resistance genes (ARGs), and microbial host of ARGs in anammox system. Results showed the anammox consortia had a stable performance and great resistance to 10 mg/L of SDZ, while 1 mg/L of CTC induced an unrecoverable inhibitory influence on nitrogen removal performance and anammox activity without any special treatment. The absolute abundances of anammox functional genes (nirS, hzsA and hdh) were stimulated by the acclimation to SDZ stress, however, they were much lower than the initial levels under CTC stress. In anammox consortia, ARGs comprised 18 types (94 subtypes) derived from over 20 genera. Strikingly, the anammox bacteria (AnAOB) "Ca. Brocadia" occupied 46.81% of the SDZ resistance genes (sul1 and sul2) and 38.63% of CTC resistance genes (tetX, tetG and rpsJ), and thus were identified as the dominant antibiotic resistance bacteria (ARB). Therefore, harboring the corresponding ARGs by AnAOB could be the primary protective mechanism to interpret the resistance of anammox consortia to antibiotics stress. Meanwhile, co-occurring of ARGs in anammox consortia suggested the synergistic cooperation of different ARGs could be an essential strategy to alleviate the SDZ and CTC stress. The present study proposed a new interpretation of possible mechanism that cause antibiotic resistance of anammox consortia.

14.
J Agric Food Chem ; 70(10): 3096-3108, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35253441

ABSTRACT

Melibiose, cellobiose, maltose, lactose, turanose, and isomaltulose were selected to be glycated with OVA. The number of free amino groups of OVA modified with different disaccharides decreased, and the secondary and tertiary structures of the modified OVA also changed greatly. Moreover, the glycation sites detected by HPLC-HCD-MS/MS were all on the sensitized epitopes of OVA, which reduced the binding ability of IgG and IgE of glycated OVA. In addition, the glycation sites with the highest DSP in different samples were located in the irregular coil region of OVA. Among the six disaccharides, the glycation reaction between melibiose and OVA was the most obvious. Through the analysis of disaccharide configuration, it was found that the glycation efficiency of the reducing disaccharide linked by a 1 → 6 glycoside bond was higher than that by a 1 → 4 glycoside bond, and reducing sugar with ß type was better than that with α type. These findings would provide a theoretical reference for the use of different sugars in food production.


Subject(s)
Disaccharides , Tandem Mass Spectrometry , Chromatography, Liquid , Glycosylation , Ovalbumin/chemistry
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(2): 132-140, 2022 Feb 15.
Article in English, Chinese | MEDLINE | ID: mdl-35209977

ABSTRACT

OBJECTIVES: To investigate the incidence of extrauterine growth retardation (EUGR) and its risk factors in very preterm infants (VPIs) during hospitalization in China. METHODS: A prospective multicenter study was performed on the medical data of 2 514 VPIs who were hospitalized in the department of neonatology in 28 hospitals from 7 areas of China between September 2019 and December 2020. According to the presence or absence of EUGR based on the evaluation of body weight at the corrected gestational age of 36 weeks or at discharge, the VPIs were classified to two groups: EUGR group (n=1 189) and non-EUGR (n=1 325). The clinical features were compared between the two groups, and the incidence of EUGR and risk factors for EUGR were examined. RESULTS: The incidence of EUGR was 47.30% (1 189/2 514) evaluated by weight. The multivariate logistic regression analysis showed that higher weight growth velocity after regaining birth weight and higher cumulative calorie intake during the first week of hospitalization were protective factors against EUGR (P<0.05), while small-for-gestational-age birth, prolonged time to the initiation of total enteral feeding, prolonged cumulative fasting time, lower breast milk intake before starting human milk fortifiers, prolonged time to the initiation of full fortified feeding, and moderate-to-severe bronchopulmonary dysplasia were risk factors for EUGR (P<0.05). CONCLUSIONS: It is crucial to reduce the incidence of EUGR by achieving total enteral feeding as early as possible, strengthening breastfeeding, increasing calorie intake in the first week after birth, improving the velocity of weight gain, and preventing moderate-severe bronchopulmonary dysplasia in VPIs.


Subject(s)
Infant, Premature , Infant, Very Low Birth Weight , Female , Fetal Growth Retardation , Gestational Age , Hospitalization , Humans , Incidence , Infant , Infant, Newborn , Prospective Studies , Risk Factors
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-928578

ABSTRACT

OBJECTIVES@#To investigate the incidence of extrauterine growth retardation (EUGR) and its risk factors in very preterm infants (VPIs) during hospitalization in China.@*METHODS@#A prospective multicenter study was performed on the medical data of 2 514 VPIs who were hospitalized in the department of neonatology in 28 hospitals from 7 areas of China between September 2019 and December 2020. According to the presence or absence of EUGR based on the evaluation of body weight at the corrected gestational age of 36 weeks or at discharge, the VPIs were classified to two groups: EUGR group (n=1 189) and non-EUGR (n=1 325). The clinical features were compared between the two groups, and the incidence of EUGR and risk factors for EUGR were examined.@*RESULTS@#The incidence of EUGR was 47.30% (1 189/2 514) evaluated by weight. The multivariate logistic regression analysis showed that higher weight growth velocity after regaining birth weight and higher cumulative calorie intake during the first week of hospitalization were protective factors against EUGR (P<0.05), while small-for-gestational-age birth, prolonged time to the initiation of total enteral feeding, prolonged cumulative fasting time, lower breast milk intake before starting human milk fortifiers, prolonged time to the initiation of full fortified feeding, and moderate-to-severe bronchopulmonary dysplasia were risk factors for EUGR (P<0.05).@*CONCLUSIONS@#It is crucial to reduce the incidence of EUGR by achieving total enteral feeding as early as possible, strengthening breastfeeding, increasing calorie intake in the first week after birth, improving the velocity of weight gain, and preventing moderate-severe bronchopulmonary dysplasia in VPIs.


Subject(s)
Female , Humans , Infant , Infant, Newborn , Fetal Growth Retardation , Gestational Age , Hospitalization , Incidence , Infant, Premature , Infant, Very Low Birth Weight , Prospective Studies , Risk Factors
17.
J Environ Sci (China) ; 112: 366-375, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34955219

ABSTRACT

Recovery of phosphorus (P) from wastewater is of great significance for alleviating the shortage of P resources. At present, the P recovery process is faced with the problem of excessive organic carbon consumption when obtaining a P-concentrated recovery solution. This study proposed a new strategy to obtain a more highly concentrated P recovery solution with minimal carbon consumption by strengthening the P storage capacity of the biofilm. A biofilm sequencing batch reactor (BSBR) process was modified to treat synthetic wastewater. The effect of the dissolved oxygen (DO) concentration on the P storage capacity of the biofilm was investigated at DO concentrations of DO 3.5 mg/L (PL) and DO 6.5 mg/L (PH). The results showed a maximum P storage of 101.2 and 149.6 mg-P/g-mixed liquid suspended solids under the two conditions. Strengthening the P storage capacity of the biofilm resulted in a net increase in the P recovery rate, which was as high as 66.96% in a harvesting cycle, and total soluble P>220 mg/L in the P recovery solution was successfully achieved. Meanwhile, the carbon cost of P recovery in the BSBR was reduced to 41.57 g-chemical oxygen demand/g-P, and the carbon utilization efficiency was enhanced. To highlight the new strategy, the P recovery performance of the BSBR was given and the relationship between P content and anaerobic P release was discussed. In addition, the changes in the microbial communities under PL and PH conditions were analyzed.


Subject(s)
Bioreactors , Phosphorus , Biofilms , Biological Oxygen Demand Analysis , Phosphorus/analysis , Waste Disposal, Fluid , Wastewater
18.
Water Res ; 210: 117955, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34953215

ABSTRACT

An innovative electro-Fenton enhanced membrane photobioreactor with satisfactory membrane fouling mitigation was constructed for microalgae harvesting. The porous carbon and carbon nanotubes hollow fiber membranes (PC-CHFMs) were used as the separation unit and cathode, simultaneously. H2O2 was generated by cathode reducing O2 in-situ, which would further produce •OH as the main oxidant by coupling H2O2 with Fe2+. The •OH could deeply remove the extracellular organic matter (EOM) deposited on the membrane surface or inside the pores. Experimental results showed that the permeate flux recovery rates of PC-CHFMs by electro-Fenton at the 18th, 29th and 41st day were 100%, 100% and 98.3%, respectively. The corresponding recovery rates by chemical cleaning at the same time were 99.8%, 81.7% and 54.4%. The stable and high permeate flux of PC-CHFMs made a great contribution to the microalgae harvesting efficiency, where the concentration factor could be 4.8 times higher than that of the control group. Filtrating superiority of PC-CHFMs was becoming more prominent with the extension of operating time. In addition, the removal efficiency of NH4+-N and TP in wastewater was approximately 100% at stable culture period.


Subject(s)
Microalgae , Nanotubes, Carbon , Hydrogen Peroxide , Photobioreactors , Wastewater
19.
Environ Res ; 200: 111390, 2021 09.
Article in English | MEDLINE | ID: mdl-34052243

ABSTRACT

In this work, a novel nitrate (NO3-) reduction pathway by anaerobic ammonium oxidation (anammox) biomass was firstly discovered with the intracellular carbon sources as the only electron donors. And the possible reaction mechanism was deduced to be intracellular dissimilatory nitrate reduction to ammonium (DNRA) pathway according to the experimental results. In batch experiments, without any external electron donors, NO3--N (about 50 mg/L) was reduced to N2 within 48 h, and a small amount of NO2--N was detected (the maximum of 2 mg/L) with the anammox biomass concentration of 4400 mg/L. Acetylene (4.46 mmol/L) addition resulted in obvious NH4+ accumulation during NO3- degradation by anammox biomass, since acetylene mainly interfered in hydrazine (N2H4) generation from NH4+ and NO. Without HCO3- addition, the NO3--N degradation rate was slower than that with HCO3- addition. Simultaneously, glycogen contents inside anammox biomass decreased to 133.22 ± 1.21 mg/g VSS and 129.79 ± 1.21 mg/g VSS with and without HCO3-, respectively, from 142.20 ± 0.61 mg/g VSS. In the long-term experiment, anammox biomass stably degraded NO3--N without external electron donors addition, and the maximum removal efficiency of NO3--N reached 55.4%. The above results indicated the anammox bacteria utilized the DNRA pathway to reduce NO3- to NO2- and further NH4+, then normal anammox metabolism would continue to convert the produced NO2- and NH4+ to N2. The intracellular stored carbon sources (e.g., glycogen) were supposed to be electron donors for NO3- degradation. This capability would enhance the viability and living space of anammox bacteria in different natural ecosystems, and make it plausible that complete nitrogen removal could be implemented only by the anammox process.


Subject(s)
Ammonium Compounds , Biomass , Bioreactors , Carbon , Ecosystem , Electrons , Nitrates , Nitrogen , Oxidation-Reduction
20.
Animals (Basel) ; 11(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922444

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus and is becoming one of the major causative agents of diarrhea in pig herds in recent years. To date, there are no commercial vaccines or antiviral pharmaceutical agents available to control PDCoV infection. Therefore, developing a reliable strategy against PDCoV is urgently needed. In this study, to observe the antiviral activity of RNA interference (RNAi), four short hairpin RNAs (shRNAs) specific to the nucleocapsid (N) gene of PDCoV were designed and tested in vitro. Of these, a double-shRNA-expression vector, designated as pSil-double-shRNA-N1, was the most effectively expressed, and the inhibition of PDCoV replication was then further evaluated in neonatal piglets. Our preliminary results reveal that plasmid-based double-shRNA-expression targeting the N gene of PDCoV can significantly protect LLC-PK1 cells and piglets from pathological lesions induced by PDCoV. Our study could benefit the investigation of the specific functions of viral genes related to PDCoV infection and offer a possible methodology of RNAi-based therapeutics for PDCoV infection.

SELECTION OF CITATIONS
SEARCH DETAIL