Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PLoS One ; 16(11): e0259740, 2021.
Article in English | MEDLINE | ID: mdl-34793515

ABSTRACT

In the current study, we analyzed the effects of the systemic inflammatory response (SIR) and amyloid ß (Aß) peptide on the expression of genes encoding cyclins and cyclin-dependent kinase (Cdk) in: (i) PC12 cells overexpressing human beta amyloid precursor protein (ßAPP), wild-type (APPwt-PC12), or carrying the Swedish mutantion (APPsw-PC12); (ii) the murine hippocampus during SIR; and (iii) Alzheimer's disease (AD) brain. In APPwt-PC12 expression of cyclin D2 (cD2) was exclusively reduced, and in APPsw-PC12 cyclins cD2 and also cA1 were down-regulated, but cA2, cB1, cB2, and cE1 were up-regulated. In the SIR cD2, cB2, cE1 were found to be significantly down-regulated and cD3, Cdk5, and Cdk7 were significantly up-regulated. Cyclin cD2 was also found to be down-regulated in AD neocortex and hippocampus. Our novel data indicate that Aß peptide and inflammation both significantly decreased the expression of cD2, suggesting that Aß peptides may also contribute to downregulation of cD2 in AD brain.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cyclin D2/metabolism , Inflammation/metabolism , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction
2.
Cancer Res ; 81(23): 6029-6043, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34625423

ABSTRACT

The family of PIM serine/threonine kinases includes three highly conserved oncogenes, PIM1, PIM2, and PIM3, which regulate multiple prosurvival pathways and cooperate with other oncogenes such as MYC. Recent genomic CRISPR-Cas9 screens further highlighted oncogenic functions of PIMs in diffuse large B-cell lymphoma (DLBCL) cells, justifying the development of small-molecule PIM inhibitors and therapeutic targeting of PIM kinases in lymphomas. However, detailed consequences of PIM inhibition in DLBCL remain undefined. Using chemical and genetic PIM blockade, we comprehensively characterized PIM kinase-associated prosurvival functions in DLBCL and the mechanisms of PIM inhibition-induced toxicity. Treatment of DLBCL cells with SEL24/MEN1703, a pan-PIM inhibitor in clinical development, decreased BAD phosphorylation and cap-dependent protein translation, reduced MCL1 expression, and induced apoptosis. PIM kinases were tightly coexpressed with MYC in diagnostic DLBCL biopsies, and PIM inhibition in cell lines and patient-derived primary lymphoma cells decreased MYC levels as well as expression of multiple MYC-dependent genes, including PLK1. Chemical and genetic PIM inhibition upregulated surface CD20 levels in an MYC-dependent fashion. Consistently, MEN1703 and other clinically available pan-PIM inhibitors synergized with the anti-CD20 monoclonal antibody rituximab in vitro, increasing complement-dependent cytotoxicity and antibody-mediated phagocytosis. Combined treatment with PIM inhibitor and rituximab suppressed tumor growth in lymphoma xenografts more efficiently than either drug alone. Taken together, these results show that targeting PIM in DLBCL exhibits pleiotropic effects that combine direct cytotoxicity with potentiated susceptibility to anti-CD20 antibodies, justifying further clinical development of such combinatorial strategies. SIGNIFICANCE: These findings demonstrate that inhibition of PIM induces DLBCL cell death via MYC-dependent and -independent mechanisms and enhances the therapeutic response to anti-CD20 antibodies by increasing CD20 expression.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Rituximab/pharmacology , Animals , Antigens, CD20 , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , Cell Proliferation , Female , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, SCID , Phosphorylation , Proto-Oncogene Proteins c-myc/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
Sci Rep ; 11(1): 10017, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976256

ABSTRACT

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) genes occur in about 20% patients with acute myeloid leukemia (AML), leading to DNA hypermethylation and epigenetic deregulation. We assessed the prognostic significance of IDH1/2 mutations (IDH1/2+) in 398 AML patients with normal karyotype (NK-AML), treated with daunorubicine + cytarabine (DA), DA + cladribine (DAC), or DA + fludarabine. IDH2 mutation was an independent favorable prognostic factor for 4-year overall survival (OS) in total NK-AML population (p = 0.03, censoring at allotransplant). We next evaluated the effect of addition of cladribine to induction regimen on the patients' outcome according to IDH1/2 mutation status. In DAC group, 4-year OS was increased in IDH2+ patients, compared to IDH-wild type group (54% vs 33%; p = 0.0087, censoring at allotransplant), while no difference was observed for DA-treated subjects. In multivariate analysis, DAC independently improved the survival of IDH2+ patients (HR = 0.6 [0.37-0.93]; p = 0.024; censored at transplant), indicating that this group specifically benefits from cladribine-containing therapy. In AML cells with R140Q or R172K IDH2 mutations, cladribine restrained mutations-related DNA hypermethylation. Altogether, DAC regimen produces better outcomes in IDH2+ NK-AML patients than DA, and this likely results from the hypomethylating activity of cladribine. Our observations warrant further investigations of induction protocols combining cladribine with IDH1/2 inhibitors in IDH2-mutant.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Adolescent , Adult , Aged , Cladribine/therapeutic use , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Middle Aged , Pharmacogenomic Variants , Poland/epidemiology , Randomized Controlled Trials as Topic , Retrospective Studies , Young Adult
4.
Cell Death Dis ; 11(11): 956, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33159047

ABSTRACT

Spleen tyrosine kinase (SYK) is an important oncogene and signaling mediator activated by cell surface receptors crucial for acute myeloid leukemia (AML) maintenance and progression. Genetic or pharmacologic inhibition of SYK in AML cells leads to increased differentiation, reduced proliferation, and cellular apoptosis. Herein, we addressed the consequences of SYK inhibition to leukemia stem-cell (LSC) function and assessed SYK-associated pathways in AML cell biology. Using gain-of-function MEK kinase mutant and constitutively active STAT5A, we demonstrate that R406, the active metabolite of a small-molecule SYK inhibitor fostamatinib, induces differentiation and blocks clonogenic potential of AML cells through the MEK/ERK1/2 pathway and STAT5A transcription factor, respectively. Pharmacological inhibition of SYK with R406 reduced LSC compartment defined as CD34+CD38-CD123+ and CD34+CD38-CD25+ in vitro, and decreased viability of LSCs identified by a low abundance of reactive oxygen species. Primary leukemic blasts treated ex vivo with R406 exhibited lower engraftment potential when xenotransplanted to immunodeficient NSG/J mice. Mechanistically, these effects are mediated by disturbed mitochondrial biogenesis and suppression of oxidative metabolism (OXPHOS) in LSCs. These mechanisms appear to be partially dependent on inhibition of STAT5 and its target gene MYC, a well-defined inducer of mitochondrial biogenesis. In addition, inhibition of SYK increases the sensitivity of LSCs to cytarabine (AraC), a standard of AML induction therapy. Taken together, our findings indicate that SYK fosters OXPHOS and participates in metabolic reprogramming of AML LSCs in a mechanism that at least partially involves STAT5, and that SYK inhibition targets LSCs in AML. Since active SYK is expressed in a majority of AML patients and confers inferior prognosis, the combination of SYK inhibitors with standard chemotherapeutics such as AraC constitutes a new therapeutic modality that should be evaluated in future clinical trials.


Subject(s)
Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/drug effects , Oxidative Phosphorylation , Protein Kinase Inhibitors/pharmacology , STAT5 Transcription Factor/antagonists & inhibitors , Syk Kinase/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Cell Respiration , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidative Stress , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
5.
Exp Hematol ; 88: 56-67.e2, 2020 08.
Article in English | MEDLINE | ID: mdl-32702393

ABSTRACT

MicroRNA-155 (MiR-155) is involved in normal B-cell development and lymphomagenesis, affecting cell differentiation, motility, and intracellular signaling. In this study, we searched for new targets of MiR-155 potentially involved in deregulation of the B-cell receptor pathway (BCR) in diffuse large B-cell lymphoma (DLBCL). We report that MiR-155 represses DEPTOR (an mTOR phosphatase) and c-CBL (SYK ubiquitin E3 ligase) through direct 3'-untranslated region interactions. In primary DLBCLs, MiR-155 exhibits a reciprocal expression pattern with DEPTOR and c-CBL. Inhibition of MiR-155 decreased expression of NFκB target genes and sensitized DLBCL cells to ibrutinib, confirming the role of MiR-155 in the modulation of BCR signaling. As the function of DEPTOR in DLBCLs has never been addressed, we first evaluated its expression in a series of 76 newly diagnosed DLBCL patients. DEPTOR protein expression was markedly lower in more aggressive nongerminal center-like (non-GCB) DLBCLs than in GCB tumors. In cell line models, inhibition of DEPTOR expression favored the migration of DLBCL cells toward the CXCL12 gradient. Finally, loss or gain of DEPTOR modulated the expression of specific pro-inflammatory cytokines and chemokines. We thus identified DEPTOR as a new MiR-155 target that is differentially expressed between GCB- and non-GCB-type DLBCLs and modulates cell migration and cytokine expression in DLBCL cells.


Subject(s)
Cell Movement , Cytokines/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cytokines/genetics , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics
6.
Cancers (Basel) ; 12(3)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138178

ABSTRACT

Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.

7.
J Cell Mol Med ; 22(7): 3548-3559, 2018 07.
Article in English | MEDLINE | ID: mdl-29665227

ABSTRACT

Lymph node microenvironment provides chronic lymphocytic leukaemia (CLL) cells with signals promoting their survival and granting resistance to chemotherapeutics. CLL cells overexpress PIM kinases, which regulate apoptosis, cell cycle and migration. We demonstrate that BCR crosslinking, CD40 stimulation, and coculture with stromal cells increases PIMs expression in CLL cells, indicating microenvironment-dependent PIMs regulation. PIM1 and PIM2 expression at diagnosis was higher in patients with advanced disease (Binet C vs. Binet A/B) and in those, who progressed after first-line treatment. In primary CLL cells, inhibition of PIM kinases with a pan-PIM inhibitor, SEL24-B489, decreased PIM-specific substrate phosphorylation and induced dose-dependent apoptosis in leukaemic, but not in normal B cells. Cytotoxicity of SEL24-B489 was similar in TP53-mutant and TP53 wild-type cells. Finally, inhibition of PIM kinases decreased CXCR4-mediated cell chemotaxis in two related mechanisms-by decreasing CXCR4 phosphorylation and surface expression, and by limiting CXCR4-triggered mTOR pathway activity. Importantly, PIM and mTOR inhibitors similarly impaired migration, indicating that CXCL12-triggered mTOR is required for CLL cell chemotaxis. Given the microenvironment-modulated PIM expression, their pro-survival function and a role of PIMs in CXCR4-induced migration, inhibition of these kinases might override microenvironmental protection and be an attractive therapeutic strategy in this disease.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proto-Oncogene Proteins c-pim-1/metabolism , Receptors, CXCR4/metabolism , TOR Serine-Threonine Kinases/metabolism , Adult , Aged , Aged, 80 and over , Cell Movement/drug effects , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Male , Middle Aged , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Tumor Cells, Cultured , Tumor Microenvironment
8.
Blood ; 130(12): 1418-1429, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28698206

ABSTRACT

Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.


Subject(s)
Hodgkin Disease/enzymology , Hodgkin Disease/immunology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins/metabolism , Reed-Sternberg Cells/enzymology , Reed-Sternberg Cells/pathology , Cell Line, Tumor , Cell Survival , Chemokines/metabolism , Down-Regulation , Hodgkin Disease/pathology , Humans , Immunomodulation , Janus Kinases/metabolism , Lymphocyte Activation/immunology , NF-kappa B/metabolism , Protein Biosynthesis , RNA Caps/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , T-Lymphocytes/immunology
9.
Mol Neurobiol ; 54(7): 5683-5698, 2017 09.
Article in English | MEDLINE | ID: mdl-27644130

ABSTRACT

Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.


Subject(s)
Alzheimer Disease/metabolism , Lymphocytes/metabolism , Mutation/genetics , Oxidative Stress/genetics , Presenilin-1/genetics , Adult , Apoptosis/genetics , Female , Humans , Male , Middle Aged , Phosphorylation , Signal Transduction , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
10.
Exp Hematol ; 46: 56-61.e1, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27720936

ABSTRACT

B-cell receptor (BCR) signaling plays a pivotal role in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and targeting the BCR pathway is a highly promising therapeutic strategy in this malignancy. The oncogenic microRNA miR-17-92 modulates multiple cellular processes such as survival, proliferation, apoptosis, angiogenesis, and BCR signaling. In the present study, we identified new targets of miR-17-92, PTPROt (protein phosphatase, receptor type O, truncated) and PP2A (protein phosphatase 2A) phosphatases, which regulate the activity of spleen tyrosine kinase (SYK) and AKT, critical components of BCR signal transduction in DLBCL cells. Introduction of miR-17-92 into DLBCL cells dampened the expression of the PTPROt and PP2A regulatory subunits PPP2R2A (protein phosphatase 2, regulatory subunit B, alpha) and PPP2R5E (protein phosphatase 2, regulatory subunit B, epsilon isoform) and increased the magnitude of SYK and AKT phosphorylation upon BCR ligation. Finally, we found that miR-17-92 expression modulates response to inhibitors of BCR signaling because downregulation of miR-17-92 increased SYK inhibitor-mediated toxicity in DLBCL cells. Our study reveals novel posttranscriptional regulatory pathways that contribute to the deregulation of BCR signaling and modulate SYK inhibitor activity in DLBCL.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , MicroRNAs/genetics , Protein Phosphatase 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , 3' Untranslated Regions , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Humans , RNA Interference , RNA, Long Noncoding
11.
PLoS One ; 11(5): e0155893, 2016.
Article in English | MEDLINE | ID: mdl-27196001

ABSTRACT

Resistance to glucocorticosteroids (GCs) is a major adverse prognostic factor in B-ALL, but the molecular mechanisms leading to GC resistance are not completely understood. Herein, we sought to elucidate the molecular background of GC resistance in B-ALL and characterize the therapeutic potential of targeted intervention in these mechanisms. Using exploratory bioinformatic approaches, we found that resistant cells exhibited significantly higher expression of MEK/ERK (MAPK) pathway components. We found that GC-resistant ALL cell lines had markedly higher baseline activity of MEK and small-molecule MEK1/2 inhibitor selumetinib increased GCs-induced cell death. MEK inhibitor similarly increased in vitro dexamethasone activity in primary ALL blasts from 19 of 22 tested patients. To further confirm these observations, we overexpressed a constitutively active MEK mutant in GC-sensitive cells and found that forced MEK activity induced resistance to dexamethasone. Since recent studies highlight the role GC-induced autophagy upstream of apoptotic cell death, we assessed LC3 processing, MDC staining and GFP-LC3 relocalization in cells incubated with either DEX, SEL or combination of drugs. Unlike either drug alone, only their combination markedly increased these markers of autophagy. These changes were associated with decreased mTOR activity and blocked 4E-BP1 phosphorylation. In cells with silenced beclin-1 (BCN1), required for autophagosome formation, the synergy of DEX and SEL was markedly reduced. Taken together, we show that MEK inhibitor selumetinib enhances dexamethasone toxicity in GC-resistant B-ALL cells. The underlying mechanism of this interaction involves inhibition of mTOR signaling pathway and modulation of autophagy markers, likely reflecting induction of this process and required for cell death. Thus, our data demonstrate that modulation of MEK/ERK pathway is an attractive therapeutic strategy overcoming GC resistance in B-ALL patients.


Subject(s)
Autophagy , Dexamethasone/pharmacology , MAP Kinase Kinase Kinase 1/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Benzimidazoles/pharmacology , Cell Death , Cell Line, Tumor , Computational Biology , Flow Cytometry , Gene Expression Regulation, Enzymologic , Humans , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Signaling System , Microscopy, Fluorescence , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Small Interfering/metabolism
12.
Blood ; 127(6): 739-48, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26585955

ABSTRACT

Inhibition of spleen tyrosine kinase (SYK) in tonic B-cell receptor (BCR) signal-dependent diffuse large B-cell lymphomas (DLBCLs) inhibits cellular proliferation, decreases cholesterol biosynthesis, and triggers apoptosis, at least in part via a mechanism involving decreased activity of phosphatidylinositol 3-kinase/AKT axis. Because forkhead box O1 (FOXO1) is a major effector of this pathway, we investigated the role of FOXO1 in toxicity of BCR pathway inhibition. Inhibition of SYK in DLBCL cells with tonic BCR signaling decreased phospho-AKT and phospho-FOXO1 levels and triggered FOXO1-driven gene expression. Introduction of constitutively active FOXO1 mutant triggered cell cycle arrest and apoptosis, indicating that increased FOXO1 activity is toxic to these DLBCL cells. Depletion of FOXO1 with short hairpin RNA led to almost complete resistance to chemical SYK inhibitor R406, demonstrating that FOXO1 is also required for R406-induced cell death. FOXO1 in these cells is also involved in regulation of expression of the critical master regulator of cholesterol biosynthesis, SREBP1. Because HRK is the key effector of SYK inhibition, we characterized a mechanism linking FOXO1 activation and HRK induction that involves caspase-dependent cleavage of HRK's transcriptional repressor DREAM. Because AKT in lymphoma cells can be regulated by other signals than BCR, we assessed the combined effects of the AKT inhibitor MK-2206 with R406 and found markedly synergistic FOXO1-dependent toxicity. In primary DLBCLs, FOXO1 expression was present in 80% of tumors, correlated with SYK activity, and was associated with longer overall survival. These results demonstrate that FOXO1 is required for SYK and AKT inhibitor-induced toxicity.


Subject(s)
Forkhead Transcription Factors/physiology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Antigen, B-Cell/genetics , Apoptosis/genetics , Cell Cycle/genetics , Forkhead Box Protein O1 , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/pathology , Microarray Analysis , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/genetics , Syk Kinase , Transcriptional Activation , Tumor Cells, Cultured
13.
Neurobiol Aging ; 34(4): 1090-100, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23153928

ABSTRACT

Previously, we reported a Ca(2+)/calmodulin (CaM)-dependent impairment of apoptosis induced by serum deprivation in Alzheimer's disease (AD) lymphoblasts. These cell lines showed downregulation of extracellular signal-regulated kinase (ERK)1/2 activity and elevated content of p21 compared with control cells. The aim of this study was to delineate the molecular mechanism underlying the distinct regulation of p21 content in AD cells. Quantitative reverse transcription polymerase chain reaction analysis demonstrated increased p21 messenger RNA (mRNA) levels in AD cells. The ERK1/2 inhibitor, PD98059, prevented death of control cells and enhanced p21 mRNA and protein levels. The CaM antagonist, calmidazolium, and the CaMKII inhibitor, KN-62, normalized the survival pattern of AD lymphoblasts by augmenting ERK1/2 activation and reducing p21 mRNA and protein levels. Upregulation of p21 transcription in AD cells appears to be the consequence of increased activity of forkhead box O3a (FOXO3a) as the result of diminished ERK1/2-mediated phosphorylation of this transcription factor, which in turn facilitates its nuclear accumulation. Murine double minute 2 (MDM2) protein levels were decreased in AD cells relative to control lymphoblasts, suggesting an impairment of FOXO3a degradation.


Subject(s)
Alzheimer Disease/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Calcium/metabolism , Cell Line , Cell Survival , Female , Humans , Male , Middle Aged
14.
J Alzheimers Dis ; 32(2): 397-415, 2012.
Article in English | MEDLINE | ID: mdl-22810102

ABSTRACT

Cell cycle (CC) reentry in neurons precedes the formation of amyloid-ß (Aß) plaques in Alzheimer's disease (AD). CC alterations were also detected in lymphocytes from sporadic AD patients. In the present study, we investigated the influence of nine presenilin 1 (PS1) mutations (P117R, M139V, L153V, H163R, S170F, F177L, I213F, L226F, E318G) on CC and Aß production in immortalized B-lymphocytes from familial AD (FAD) patients and in stably transfected human embryonic kidney cells. In both cell types, only the P117R mutation increased levels of key G1/S phase regulatory proteins, p53, and its effector p21, causing G1 phase prolongation with simultaneous S phase shortening, and lowering basal apoptosis. The CC changes were rescued by inhibition of p53, but not of γ-secretase. Moreover, the investigated PS1 mutants showed differences in the increased levels of secreted Aß40 and Aß42 and in Aß42/Aß40 ratios, but these differences did not correlate with CC patterns. Altogether, we found that both CC regulation and Aß production differentiate PS1 mutations, and that CC PS1 activity is mediated by p53/p21 signaling but not by γ-secretase activity. The identified CC dysregulation linked with increased p53 and p21 protein levels distinguishes the highly pathogenic PS1 P117R mutation and may contribute to the specific severity of the clinical progression of FAD associated with the mutation in the PS1 117 site. These findings suggest that impairment in lymphocyte CC might play a pathogenic function in AD and are relevant to the development of new diagnostic approaches and personalized therapeutic strategies.


Subject(s)
Alzheimer Disease/genetics , B-Lymphocytes/metabolism , Cell Cycle/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Presenilin-1/genetics , Tumor Suppressor Protein p53/metabolism , Adult , Alzheimer Disease/metabolism , Apoptosis/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , HEK293 Cells , Humans , Male , Middle Aged , Mutation , Tumor Suppressor Protein p53/genetics
15.
Neurobiol Aging ; 32(12): 2319.e13-26, 2011 Dec.
Article in English | MEDLINE | ID: mdl-20541838

ABSTRACT

Cell cycle (CC) reactivation in neurons seems to underlie the development of Alzheimer's disease (AD). We analyzed whether CC alterations can be detected in immortalized lymphocytes from patients with the sporadic and the familial form of AD (SAD and FAD). Real-time polymerase chain reaction (PCR)-arrays, immunoblotting, and flow cytometry demonstrated differences in the regulation of G1/S phases between SAD lymphocytes and cells from nondemented subjects, as well as between SAD and FAD cells. SAD compared to FAD lymphocytes showed differences in expression profiles of the 90 CC genes, and a marked increase in the level of the p21 protein, which promotes G1-arrest. Accordingly, SAD but not FAD cells had a prolonged G1-phase. γ-secretase inhibition did not change the CC profiles of the cell lines. These data show that SAD involves a prolongation of the G1 phase driven by p21 pathway, which is not activated in FAD cells. Thus, the mechanism in SAD differs from FAD. Moreover, disturbances of the CC in lymphocytes have a potential diagnostic value.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Cell Cycle/physiology , Lymphocytes/pathology , Adult , Aged , Cell Line, Transformed , Cell Proliferation , Female , G1 Phase/physiology , Humans , Male , Middle Aged , S Phase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...