Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Pers Med ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36579579

ABSTRACT

COVID-19 continues to afflict the global population, causing several pathological diseases and exacerbating co-morbidities due to SARS-CoV-2's high mutation. Recent interest has been devoted to some neuronal manifestations and to increased levels of Nerve Growth Factor (NGF) and Brain-derived Neurotrophic Factor (BDNF) in the bloodstream during SARS-CoV-2 infection, neurotrophins that are well-known for their multifactorial actions on neuro-immune-endocrine and visual functions. Nineteen (19) patients were enrolled in this monocentric prospective study and subjected to anamnesis and biosamples collection (saliva and blood) at hospitalization (acute phase) and 6 months later (remission phase). NGF and BDNF were quantified by ELISA, and biochemical data were related to biostrumental measurements. Increased NGF and BDNF levels were quantified in saliva and serum during the acute phase of SARS-CoV-2 infection (hospitalized patients), and reduced levels were observed in the next 6 months (remission phase), never matching the baseline values. Salivary and circulating data would suggest the possibility of considering sera and saliva as useful matrices for quickly screening neurotrophins, in addition to SARS-CoV2 antigens and RNA. Overall, the findings described herein highlight the importance of NGF and BDNF as dynamic biomarkers for monitoring disease and reinforces the possibility of using saliva and sera for quick, non-invasive COVID-19 screening.

2.
Front Psychiatry ; 12: 655453, 2021.
Article in English | MEDLINE | ID: mdl-34220571

ABSTRACT

Background: To evaluate the beneficial effects of relaxation response (RR) training in adult stressed subjects by evaluating the psychometric response recorded at relaxation session. Cortisol as well as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) mediators were quantified in both saliva and tears, and their levels were related to each other and to the psychometric response. Methods: Stressed subjects (n = 23; 10M/13F; age range 21-53 years old) were voluntarily enrolled in the study. RR training sessions were carried out for 2 months, 1 day per week, at the same time (3-5 p.m.). Two different psychological questionnaires, the Perceived Stress Scale-10 (PSS-10) and the Beck Depression Inventory - Short Form (BDI-SF) and Ocular Surface Disease Index (OSDI) tests, were administered before each session. Saliva and tears were sampled for cortisol (EIA), NGF (ELISA), and BDNF (ELISA) quantifications. Questionnaires' data were analyzed and compared to biochemical ones. Results: All subjects reported beneficial effects from training. RR significantly reduced the psychological stress indexes (p = 0.039 for PSS-10 and p = 0.001 for BDI-SF). Specifically, RR training lowered the perception of Perceived Helplessness (items 1, 3, 10; p < 0.05) in PSS-10 and increased the Perceived Self-Efficacy (p < 0.05). OSDI score was in the normal range (0-25). Biochemically, a decrease in cortisol, a trend to a decrease in NGF, and an increase in BDNF levels were observed in saliva samples after RR treatment. Furthermore, a trend to a decrease in NGF and an increase in BDNF were quantified in tear samples. A correlation between PSS-10 total score and saliva NGF variation (%) as well as between BDI-SF total score and BDNF tear levels were also observed. Conclusion: RR training appeared useful to lowering psychological, mental, and physical stress, as supported by both psychological total and single scores. The finding on biochemical levels of BDNF in saliva and tears are sustained by previous studies while those of NGF require further investigation. Overall, these data on a small population highlight the potential use of RR training and potential neurotrophic changes in biological fluids, in stressed volunteers.

3.
Brain Sci ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205192

ABSTRACT

Glioblastoma (GBM) is the most aggressive and malignant form of primary brain cancer, characterized by an overall survival time ranging from 12 to 18 months. Despite the progress in the clinical treatment and the growing number of experimental data aimed at investigating the molecular bases of GBM development, the disease remains characterized by a poor prognosis. Recent studies have proposed the existence of a population of GBM cancer stem cells (CSCs) endowed with self-renewal capability and a high tumorigenic potential that are believed to be responsible for the resistance against common chemotherapy and radiotherapy treatments. Reelin is a large secreted extracellular matrix glycoprotein, which contributes to positioning, migration, and laminar organization of several central nervous system structures during brain development. Mutations of the reelin gene have been linked to disorganization of brain structures during development and behavioral anomalies. In this study, we explored the expression of reelin in GBM and its related peritumoral tissue and performed the same analysis in CSCs isolated from both GBM (GCSCs) and peritumoral tissue (PCSCs) of human patients. Our findings reveal (i) the higher expression of reelin in GBM compared to the peritumoral tissue by immunohistochemical analysis, (ii) the mRNA expression of both reelin and its adaptor molecule Dab1 in either CSC subtypes, although at a different extent; and (iii) the contribution of CSCs-derived reelin in the migration of human primary GBM cell line U87MG. Taken together, our data indicate that the expression of reelin in GBM may represent a potential contribution to the regulation of GBM cancer stem cells behavior, further stimulating the interest on the reelin pathway as a potential target for GBM treatment.

4.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562724

ABSTRACT

Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as well as responsible for the recurrence originating in this apparently normal area and, accordingly, for the resistance to treatment with the standard chemotherapeutic regimen. Notably, the inverse correlation found between MGMT expression in peritumoral tissue and patients' survival suggests a prognostic role for this protein.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Brain Neoplasms/metabolism , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Glioblastoma/metabolism , Neoplasm Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Hospitalization , Humans , Male , Prospective Studies , Tumor Microenvironment
5.
Sci Rep ; 11(1): 1672, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462282

ABSTRACT

We previously described the profibrogenic effect of NGF on conjunctival Fibroblasts (FBs) and its ability to trigger apoptosis in TGFß1-induced myofibroblasts (myoFBs). Herein, cell apoptosis/signalling, cytokines' signature in conditioned media and inflammatory as well as angiogenic pathway were investigated. Experimental myoFBs were exposed to NGF (0.1-100 ng/mL), at defined time-point for confocal and biomolecular analysis. Cells were analysed for apoptotic and cell signalling activation in cell extracts and for some inflammatory and proinflammatory/angiogenic factors' activations. NGF triggered cJun overexpression and phospho-p65-NFkB nuclear translocation. A decreased Bcl2:Bax ratio and a significant expression of smad7 were confirmed in early AnnexinV-positive myoFBs. A specific protein signature characterised the conditioned media: a dose dependent decrease occurred for IL8, IL6 while a selective increase was observed for VEGF and cyr61 (protein/mRNA). TIMP1 levels were unaffected. Herein, NGF modulation of smad7, the specific IL8 and IL6 as well as VEGF and cyr61 modulation deserve more attention as opening to alternative approaches to counteract fibrosis.


Subject(s)
Conjunctiva/pathology , Myofibroblasts/pathology , Nerve Growth Factor/pharmacology , Transforming Growth Factor beta1/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cells, Cultured , Conjunctiva/drug effects , Conjunctiva/metabolism , Fibrosis , Humans , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Signal Transduction
6.
Life Sci Alliance ; 3(10)2020 10.
Article in English | MEDLINE | ID: mdl-32753528

ABSTRACT

RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68 -/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68 -/- mice correlate with defects in muscle and motor unit integrity. Sam68 -/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68 -/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Alternative Splicing/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Neurons/metabolism , Neuromuscular Junction/physiology , RNA Splicing/genetics , RNA Splicing/physiology , RNA-Binding Proteins/genetics , Synapses/metabolism
7.
Int Urol Nephrol ; 52(10): 1959-1967, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32725510

ABSTRACT

OBJECTIVE: Fatigue and depressed mood are considered main impediments to physical activity in haemodialysis (HD) patients. A better understanding of their interrelationships is crucial to develop effective therapies. Moreover, measurement of daily physical activity (DPA) in HD patients is tricky, as it is usually assessed by subjective self-report questionnaires. Therefore, we aimed to objectively measure sponteanous DPA with motion sensors and to explore its relation with fatigue and depressive symptoms. METHODS: DPA was assessed for seven consecutive days in 37 HD patients based on their daily step count measured with the SenseWear™ Armband. The Fatigue Severity Scale (FSS) and Beck Depression Inventory-II (BDI-II) were administered to evaluate fatigue and depressed mood. RESULTS: Median DPA was 2424 steps/day, (IQR:892-4545). In 81% of subjects, DPA felt within a sedentary lifestyle classification, as they made < 5.000 steps/day. DPA did not correlate with fatigue (rs = 0.04, p = 0.832), and did not significantly differ between patients categorized as clinically fatigued (n = 23, FSS ≥ 4) or not (n = 14, FSS < 4) (p = 0.654, d = 0.20). Although low-depressed subjects (n = 19, BDI-II ≤ 13) made on average 1.7 times more steps/day than high-depressed subjects (n = 18, BDI-II > 13) (p = 0.111, d = 0.60), depressive mood did also not correlate significantly with DPA (rs = - 0.23, p = 0.175). CONCLUSION: Objective assessment of DPA with motion sensors is feasible in HD patients and allows identifying a sedentary lifestyle. Our results suggest that spontanous DPA is determined by age rather than by fatigue or mood.


Subject(s)
Depression/epidemiology , Exercise , Fatigue/epidemiology , Fitness Trackers , Renal Dialysis , Adult , Aged , Aged, 80 and over , Correlation of Data , Female , Humans , Male , Middle Aged , Young Adult
8.
Mol Neurobiol ; 55(10): 7921-7940, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29488136

ABSTRACT

Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra+/-) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1+/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Neural Inhibition , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , Animals , Apoptosis , Behavior, Animal , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Female , Gamma Rhythm , Interneurons/metabolism , Male , Mice, Inbred C57BL , Neurodevelopmental Disorders/pathology , Neuronal Plasticity , Parvalbumins/metabolism , Social Behavior
9.
Exp Neurol ; 287(Pt 1): 21-33, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27771352

ABSTRACT

The presence of α-synuclein (α-syn) in Lewy bodies and Lewy neurites is an important characteristic of the neurodegenerative processes of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons in Parkinson's disease (PD) and other synucleinopathies. Here we report that Berlin-Druckrey rats carrying a spontaneous mutation in the 3' untranslated region of α-syn mRNA (m/m rats) display a marked accumulation of α-syn in the mesencephalic area, striatum and frontal cortex, accompanied to severe dysfunctions in the dorsolateral striatum. Despite a small reduction in the number of SNpc and ventral tegmental area DAergic cells, the surviving dopaminergic neurons of the m/m rats do not show clear-cut alterations of the spontaneous and evoked firing activity, DA responses and somatic amphetamine-induced firing inhibition. Interestingly, mutant DAergic neurons display diminished whole-cell Ih conductance and a reduced frequency of spontaneous excitatory synaptic currents. By contrast, m/m rats show a severe impairment of DA and glutamate release in the dorsolateral striatum, as revealed by amperometric measure of DA currents and by electrophysiological recordings of glutamatergic synaptic events in striatal medium spiny neurons. These functional impairments are paralleled by a decreased expression of the DA transporter and VGluT1 proteins in the same area. Thus, together with α-syn overload in the mesencephalic region, striatum and frontal cortex, the main functional alterations occur in the DAergic and glutamatergic terminals in the dorsal striatum of the m/m rats.


Subject(s)
Dopaminergic Neurons/physiology , Glutamic Acid/metabolism , Membrane Potentials/physiology , Mesencephalon/cytology , alpha-Synuclein/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Animals, Newborn , Bicuculline/pharmacology , Cell Count , Dopamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/drug effects , Excitatory Amino Acid Antagonists/pharmacology , GABA Antagonists/pharmacology , GABA-B Receptor Agonists/pharmacology , In Vitro Techniques , Membrane Potentials/drug effects , Patch-Clamp Techniques , Picrotoxin/pharmacology , Rats , Synaptic Potentials/drug effects , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , alpha-Synuclein/genetics
10.
Oncotarget ; 7(48): 78541-78556, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27705944

ABSTRACT

The formation of new blood vessels represents a crucial event under both physiological and pathological circumstances. In this study, we evaluated by immunohistochemistry, and/or Western blotting and/or quantitative real time-PCR the expression of HIF1α, HIF2α, VEGF, VEGFR1 and VEGFR2 in surgical glioblastoma multiforme (GBM) and peritumoral tissue samples obtained from 50 patients as well as in cancer stem cells (CSCs) isolated from GBM (GCSCs) and peritumoral tissue (PCSCs) of 5 patients. We also investigated the contribution of both GCSCs and PCSCs on the behavior of endothelial cells (ECs) in vitro. Immunohistochemistry demonstrated the expression of angiogenesis markers in both GBM and peritumoral tissue. In addition, in vitro tube formation assay indicated that both GCSCs and PCSCs stimulate EC proliferation as well as tube-like vessel formation. An increased migration aptitude was mainly observed when ECs were cultured in the presence of GCSCs rather than in the presence of PCSCs. These findings suggest that relevant neoangiogenetic events may occur in GBM. In particular, VEGF/VEGFR co-expression in PCSCs leads to hypothesize the involvement of an autocrine signaling. Moreover, our results suggest that both GCSCs and PCSCs own the skill of activating the "angiogenic switch" and the capability of modulating EC behavior, indicating that both cell types are either responsive to angiogenic stimuli or able to trigger angiogenic response. Together with our previous findings, this study adds a further piece to the challenging puzzle of the characterization of peritumoral tissue and of the definition of its real role in GBM pathophysiology.


Subject(s)
Angiogenic Proteins/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic , Adult , Aged , Angiogenic Proteins/genetics , Autocrine Communication , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Movement , Cell Proliferation , Coculture Techniques , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kaplan-Meier Estimate , Male , Middle Aged , Neoplastic Stem Cells/pathology , Signal Transduction , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Young Adult
11.
J Neuropathol Exp Neurol ; 75(2): 134-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26792897

ABSTRACT

Characterization of tissue surrounding glioblastoma (GBM) is a focus for translational research because tumor recurrence invariably occurs in this area. We investigated the expression of the progenitor/stem cell markers GD3 ganglioside and NG2 proteoglycan in GBM, peritumor tissue (brain adjacent to tumor, BAT) and cancer stem-like cells (CSCs) isolated from GBM (GCSCs) and BAT (PCSCs). GD3 and NG2 immunohistochemistry was performed in paired GBM and BAT specimens from 40 patients. Double-immunofluorescence was carried out to characterize NG2-positive cells of vessel walls. GD3 and NG2 expression was investigated in GCSCs and PCSCs whose tumorigenicity was also evaluated in Scid/bg mice. GD3 and NG2 expression was higher in tumor tissue than in BAT. NG2 decreased as the distance from tumor margin increased, regardless of the tumor cell presence, whereas GD3 correlated with neoplastic infiltration. In BAT, NG2 was coexpressed with a-smooth muscle actin (a-SMA) in pericytes and with nestin in the endothelium. Higher levels of NG2 mRNA and protein were found in GCSCs while GD3 synthase was expressed at similar levels in the 2 CSC populations. PCSCs had lower tumorigenicity than GCSCs. These data suggest the possible involvement of GD3 and NG2 in pre/pro-tumorigenic events occurring in the complex microenvironment of the tissue surrounding GBM.


Subject(s)
Antigens/metabolism , Brain Chemistry/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gangliosides/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Proteoglycans/metabolism , Stem Cells/metabolism , Actins/biosynthesis , Actins/genetics , Adult , Aged , Animals , Antigens/genetics , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Female , Gangliosides/genetics , Humans , Immunohistochemistry , Karnofsky Performance Status , Male , Mice , Mice, SCID , Middle Aged , Nestin/biosynthesis , Proteoglycans/genetics , Sialyltransferases/biosynthesis , Sialyltransferases/genetics , Young Adult
12.
J Cell Physiol ; 231(3): 531-44, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26248215

ABSTRACT

The Toll-like Receptor (TLR) family ensures prompt response towards pathogens, protecting the host against infections, and guarantees a realistic balance between protective and detrimental activities. Multiple regulating mechanisms characterize TLR activity that is not limited to innate and adaptive antimicrobial immune responses, as observed in the inflammatory (either infective, allergic, or autoimmune) responses associated with tissue remodeling. Following the insult and the arise of inflammatory response, tissue remodeling takes place and might develop in fibrosis, depending on microenvironment as a result of imbalanced fibroblasts (FBs) and myofibroblasts (myoFBs) activation/survival. The process is driven by an epithelial-fibroblast-immune cell cross-talk. While the main FB function is the matrix metabolism for tissue homeostasis or repair, the myoFB differentiation represents a crucial step in attempting repair of injury. FBs/myoFBs provide more than structural support at site of injury, synthesizing and/or reacting to different cytokines, growth factors, neuromediators and soluble/lipid mediators. TLR-bearing FBs/myoFBs might contribute at the innate immune level, providing a second line of protection/defense as well as being a target/effector cell of tissue remodeling. TLRs might also interfere with acute inflammation as well as with established fibrosis, triggering structural/functional changes in agreement with the genetic background, the site of lesion, the entity of associated infection, the poor blood circulation or the pharmacological treatments, all together strictly influencing tissue repair/remodeling process. This review will focus on the recent findings on TLRs at launch and long-lasting tissue remodeling process, that strongly suggest TLRs as optional targets for future therapies.


Subject(s)
Cytokines/metabolism , Epithelial Cells/metabolism , Homeostasis/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Animals , Cytokines/immunology , Fibroblasts/metabolism , Humans
13.
Front Cell Neurosci ; 9: 433, 2015.
Article in English | MEDLINE | ID: mdl-26594149

ABSTRACT

Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.

14.
Front Neuroanat ; 9: 68, 2015.
Article in English | MEDLINE | ID: mdl-26074783

ABSTRACT

Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

15.
Neurotoxicology ; 45: 67-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25305366

ABSTRACT

Genetic risk factors acting during pregnancy or early after birth have been proposed to account for the exponential increase of autism diagnoses in the past 20 years. In particular, a potential link with exposure to environmental mercury has been suggested. Male sex constitutes a second risk factor for autism. A third potential genetic risk factor is decreased Reelin expression. Male heterozygous reeler (rl(+/-)) mice show an autism-like phenotype, including Purkinje cells (PCs) loss and behavioral rigidity. We evaluated the complex interactions between 3 risk factors, i.e. genetic status, sex, and exposure to methylmercury (MeHg), in rl(+/-) mice. Mice were exposed to MeHg during the prenatal and early postnatal period, either at a subtoxic dose (2 ppm in Dams' drinking water), or at a toxic dose (6 ppm Dams' drinking water), based on observations in other rodent species and mice strains. We show that: (a) 2 ppm MeHg does not cause PCs loss in the different animal groups, and does not enhance PCs loss in rl(+/-) males; consistent with a lack of overt neurotoxicity, 2 ppm MeHg per se does not cause behavioral alterations (separation-induced ultrasonic calls in newborns, or sociability and social preference in adults); (b) in stark contrast, 6 ppm MeHg causes a dramatic reduction of PCs number in all groups, irrespective of genotype and sex. Cytochrome C release from mitochondria of PCs is enhanced in 6 ppm MeHg-exposed groups, with a concomitant increase of µ-calpain active subunit. At the behavioral level, 6 ppm MeHg exposure strongly increases ultrasonic vocalizations in all animal groups. Notably, 6 ppm MeHg significantly decreases sociability in rl(+/-) male mice, while the 2 ppm group does not show such as decrease. At a subtoxic dose, MeHg does not enhance the autism-like phenotype of male rl(+/-) mice. At the higher MeHg dose, the scenario is more complex, with some "autism-like" features (loss of sociability, preference for sameness) being evidently affected only in rl(+/-) males, while other neuropathological and behavioral parameters being altered in all groups, independently from genotype and sex. Mitochondrial abnormalities appear to play a crucial role in the observed effects.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Cerebellum/drug effects , Child Development Disorders, Pervasive/chemically induced , Extracellular Matrix Proteins/genetics , Methylmercury Compounds/toxicity , Nerve Tissue Proteins/genetics , Prenatal Exposure Delayed Effects , Serine Endopeptidases/genetics , Animals , Apoptosis/drug effects , Cell Count , Cerebellum/metabolism , Child Development Disorders, Pervasive/genetics , Disease Models, Animal , Female , Heterozygote , Male , Methylmercury Compounds/administration & dosage , Methylmercury Compounds/analysis , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Motor Activity/drug effects , Pregnancy , Purkinje Cells/drug effects , Purkinje Cells/ultrastructure , Reelin Protein , Risk Factors , Sex Factors , Social Behavior , Vocalization, Animal/drug effects
16.
PLoS One ; 9(8): e105166, 2014.
Article in English | MEDLINE | ID: mdl-25121761

ABSTRACT

Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, ßIII-Tubulin and GFAP); Ca(2+) signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (ßIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and ßIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca(2+)-channels but they exhibited increased intracellular Ca(2+) levels in response to ATP. These Ca(2+) signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca(2+)-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.


Subject(s)
Brain Neoplasms/pathology , Clone Cells , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Animals , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Differentiation , Cell Line, Tumor , Culture Media , Flow Cytometry , Humans , Mice , Mice, Nude
17.
Int J Cell Biol ; 2014: 725928, 2014.
Article in English | MEDLINE | ID: mdl-24627687

ABSTRACT

Both Reelin and Nerve Growth Factor (NGF) exert crucial roles in retinal development. Retinogenesis is severely impaired in E-reeler mice, a model of Reelin deficiency showing specific Green Fluorescent Protein expression in Rod Bipolar Cells (RBCs). Since no data are available on Reelin and NGF cross-talk, NGF and trkA(NGFR)/ p75(NTR) expression was investigated in retinas from E-reeler versus control mice, by confocal microscopy, Western blotting, and real time PCR analysis. A scattered increase of NGF protein was observed in the Ganglion Cell Layer and more pronounced in the Inner Nuclear Layer (INL). A selective increase of p75(NTR) was detected in most of RBCs and in other cell subtypes of INL. On the contrary, a slight trend towards a decrease was detected for trkA(NGFR), albeit not significant. Confocal data were validated by Western blot and real time PCR. Finally, the decreased trkA(NGFR)/ p75(NTR) ratio, representative of p75(NTR) increase, significantly correlated with E-reeler versus E-control. These data indicate that NGF-trkA(NGFR)/ p75(NTR) is affected in E-reeler retina and that p75(NTR) might represent the main NGF receptor involved in the process. This first NGF-trkA(NGFR)/ p75(NTR) characterization suggests that E-reeler might be suitable for exploring Reelin-NGF cross-talk, representing an additional information source in those pathologies characterized by retinal degeneration.

18.
J Cell Biochem ; 114(8): 1843-51, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23463606

ABSTRACT

Caveolin-1 (CAV1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we investigated the involvement of CAV1 in endothelial cell (EC) functions and show that siRNA-induced CAV1 silencing in the human EC line EA.hy926 induces distinctive morphological changes, such as a marked increase in cell size and formation of stress fibers. Design-based stereology was employed in this work to make unbiased quantification of morphometric properties such as volume, length, and surface of CAV1 silenced versus control cells. In addition, we showed that downregulation of CAV1 affects cell cycle progression at G1/S phase transition most likely by perturbation of AKT signaling. With the aim to assess the contribution of CAV1 to typical biological processes of EC, we report here that CAV1 targeting affects cell migration and matrix metalloproteinases (MMPs) activity, and reduces angiogenesis in response to VEGF, in vitro. Taken together our data suggest that the proper expression of CAV1 is important not only for maintaining the appropriate morphology and size of ECs but it might represent a prospective molecular target for studying key biological mechanisms such as senescence and tumorigenesis.


Subject(s)
Caveolin 1/biosynthesis , Cell Movement/physiology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation/physiology , Cell Line , Collagenases/metabolism , G1 Phase/physiology , Gene Knockdown Techniques , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , S Phase/physiology , Signal Transduction/physiology
19.
J Neurochem ; 122(2): 415-26, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537092

ABSTRACT

The effects of intracerebroventricular administration of neuropeptide Y (NPY), which is believed to play an important role in neuroprotection against excitotoxicity and in the modulation of adult neurogenesis, were evaluated in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy represented by trimethyltin (TMT) intoxication. A single TMT injection (8 mg/kg) causes, in the rat brain, massive neuronal death, selectively involving pyramidal neurons, accompanied by glial activation and enhanced hippocampal neurogenesis. Our data indicate that intracerebroventricular administration of exogenous NPY (at the dose of 2 µg/2 µL, 4 days after TMT-administration), in adult rats, exerts a protective role in regard to TMT-induced hippocampal damage and a proliferative effect on the hippocampal neurogenic niche through the up-regulation of Bcl-2, Bcl2l1, Bdnf, Sox-2, NeuroD1, Noggin and Doublecortin genes, contributing to delineate more clearly the role of NPY in in vivo neurodegenerative processes.


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Hippocampus/drug effects , Nerve Degeneration/prevention & control , Neurogenesis/drug effects , Neuropeptide Y/pharmacology , Neuroprotective Agents , Trimethyltin Compounds , Animals , Antimetabolites , Apoptosis Regulatory Proteins/biosynthesis , Brain-Derived Neurotrophic Factor/biosynthesis , Bromodeoxyuridine , Doublecortin Protein , Epilepsy, Temporal Lobe/chemically induced , Female , Gene Expression/drug effects , Hippocampus/pathology , Immunohistochemistry , Injections, Intraventricular , Nerve Degeneration/etiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Neuropeptide Y/administration & dosage , RNA/biosynthesis , RNA/isolation & purification , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Neuropeptide Y/drug effects
20.
Psychoneuroendocrinology ; 35(9): 1374-87, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20452127

ABSTRACT

According to the "extreme-male brain" theory, elevated fetal testosterone levels may partly explain the skewed sex ratio found in Autism Spectrum Disorders (ASD). Correcting this testosterone imbalance by increasing estrogen levels may mitigate the abnormal phenotype. Accordingly, while control heterozygous reeler (rl/+) male mice - a putative model of neuroanatomical and behavioral endophenotypes in ASD - show a decreased number of Purkinje cells (PC) compared to control wild-type (+/+) littermates, neonatal estradiol administration has been shown to correct this deficit in the short-term (i.e. on postnatal day 15). Here, we further investigated the neuroanatomical and behavioral abnormalities of rl/+ male mice and the potential compensatory effects of neonatal treatment with estradiol. In a longitudinal study, we observed that: i) infant rl/+ mice showed reduced motivation for social stimuli; ii) adult rl/+ male mice showed reduced cognitive flexibility; iii) the number of amygdalar parvalbumin-positive GABAergic interneurons were remarkably reduced in rl/+ mice; iv) neonatal estradiol administration into the cisterna magna reverted the abnormal profile both at the behavioral and at the neuroanatomical level in the amygdala but did not compensate for the cerebellar abnormalities in adulthood. This study supports the view that an increased excitation-to-inhibition ratio in the cerebellum and in the amygdala during a critical window of development could be crucial to the social and cognitive phenotype of male rl/+ mice, and that acute estradiol treatment during this critical window may mitigate symptoms' severity.


Subject(s)
Animals, Newborn , Behavior, Animal/drug effects , Estradiol/pharmacology , Nervous System/drug effects , Animals , Animals, Newborn/physiology , Animals, Newborn/psychology , Behavior, Animal/physiology , Estradiol/administration & dosage , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Fear/drug effects , Female , Hand Strength , Heterozygote , Homing Behavior/drug effects , Homing Behavior/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Nervous System/anatomy & histology , Nervous System/growth & development , Nervous System/metabolism , Neuroanatomy , Reflex/drug effects , Social Behavior , Vocalization, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...