Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Immunol ; 175: 55-62, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305848

ABSTRACT

The founding family member, Interleukin (IL)-17A, is commonly known as IL-17 and has garnered increasingly attention for proinflammatory functions in autoimmune disorders. Although the effects of IL-17A on hepatic important drug-metabolizing enzymes and transporters (DMETs) expression still remain unclear, it is critical to ascertain owing to the well-established alterations of the drug disposition capacity of the liver occurring during immune imbalance. The present study was designed to explore the effects and mechanisms of IL-17A on DMETs mRNA and protein expression in HepaRG cells by real-time quantitative reverse transcription polymerase chain reaction and Western blot, respectively. It is discovered that IL-17A can inhibit most DMETs mRNA expression (drug-metabolizing enzymes of CYP1A2, CYP3A4, CYP2C9, CYP2C19, GSTA1 and UGT1A1 and transporters of NTCP, OCT1, OATP1B1, BCRP and MDR1) as well as the protein expression of CYP3A4 and CYP2C19, via the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. Thus, abnormal regulation of DMETs in IL-17A-mediated immune disorders such as psoriasis may cause alterations in pharmacokinetic processes and may occasionally result in unexpected drug-drug interactions (DDIs) in clinical practice.

2.
Br J Clin Pharmacol ; 90(2): 440-451, 2024 02.
Article in English | MEDLINE | ID: mdl-37766511

ABSTRACT

AIMS: The aim of this study was to explore the influence and possible mechanisms of pharmacokinetics-related gene polymorphisms, especially CYP2C19 polymorphisms, and non-genetic factors combined with the inflammatory status on the voriconazole (VRC) metabolism of the Chinese population. METHODS: Clinical studies were performed by collecting more than one VRC trough concentration and C-reactive protein (CRP) level. A total of 265 blood samples were collected from 120 patients. RESULTS: Results of multiple regression analyses demonstrated that CYP2C19 genotypes and albumin (Alb) level remained predictors of Cmin ss/D in patients with no to mild inflammation (R2 = 0.12, P < .001). In addition, in patients with moderate to severe inflammation, it resulted in a significant model containing factors of CRP and total bilirubin (T-Bil) levels (R2 = 0.19, P < .001). In non-clinical studies, 32 rats were divided into control and inflammatory groups, and it was found that the mean residence time (MRT(0-t) ) of VRC in the inflammatory group was significantly longer than that in the control group (P < .001), which may be due to down-regulation of mRNA and protein expression of CYP2C19 (CYP2C6 in rats) through interleukin (IL)-6/signal transducer and activator of transcription (STAT) 3 pathway. CONCLUSIONS: Therefore, the effect of CYP2C19 polymorphisms on VRC metabolism may be masked by inflammatory status, which should be of more concern than CYP2C19 polymorphisms in patients with moderate to severe inflammation. Additionally, the impact of Alb and T-Bil on VRC metabolism should not be disregarded.


Subject(s)
Antifungal Agents , Inflammation , Humans , Animals , Rats , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Inflammation/drug therapy , China , Genotype
3.
J Chemother ; 36(3): 179-189, 2024 May.
Article in English | MEDLINE | ID: mdl-37599449

ABSTRACT

Voriconazole (VRC) displays highly variable pharmacokinetics impacting treatment efficacy and safety. To provide evidence for optimizing VRC therapy regimens, the authors set out to determine the factors impacting VRC steady-state trough concentration (Cmin) in patients with various albumin (Alb) level. A total of 275 blood samples of 120 patients and their clinical characteristics and genotypes of CYP2C19, CYP3A4, CYP3A5, CYP2C9, FMO3, ABCB1, POR, NR1I2 and NR1I3 were included in this study. Results of multivariate linear regression analysis demonstrated that C-reactive protein (CRP) and total bilirubin (T-Bil) were predictors of the VRC Cmin adjusted for dose in patients with hypoalbuminemia (Alb < 35 g/L) (R2 = 0.16, P < 0.001). Additionally, in patients with normal albumin level (Alb ≥ 35 g/L), it resulted in a significant model containing factors of the poor metabolizer (PM) CYP2C19 genotype and CRP level (R2 = 0.26, P < 0.001). Therefore, CRP and T-Bil levels ought to receive greater consideration than genetic factors in patients with hypoalbuminemia.


Subject(s)
Antifungal Agents , Hypoalbuminemia , Humans , Voriconazole/adverse effects , Antifungal Agents/adverse effects , Cytochrome P-450 CYP2C19/genetics , Pharmacogenomic Variants , Hypoalbuminemia/genetics , Hypoalbuminemia/chemically induced , Hypoalbuminemia/drug therapy , C-Reactive Protein , Genotype , China
4.
Pharm Res ; 40(10): 2413-2422, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37726405

ABSTRACT

AIMS: Dasatinib, a second-generation tyrosine kinase inhibitor of BCR-ABL 1, used for first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia (CML), exhibits high pharmacokinetic (PK) variability. However, its PK data in Chinese patients with CML remains rarely reported to date. Thus, we developed a population pharmacokinetic (PPK) model of dasatinib in Chinese patients and identified the covariate that could explain the individual variability of PK for optimal individual administration. METHODS: PPK modeling for dasatinib was performed based on 754 plasma concentrations obtained from 140 CML patients and analysis of various genetic and physicochemical parameters. Modeling was performed with nonlinear mixed-effects (NLME) using Phoenix NLME. The finally developed model was evaluated using internal and external validation. Monte Carlo simulations were used to predict drug exposures at a steady state for various dosages. RESULTS: The PK of dasatinib were well described by a two-compartment with a log-additive residual error model. Patients in the current study had a relatively low estimate of CL/F (126 L/h). A significant association was found between the covariate of age and CL/F of dasatinib, which was incorporated into the final model. None of the genetic factors was confirmed as a significant covariate for dasatinib. The results of external validation with 140 samples from 36 patients were acceptable. Simulation results showed significantly higher exposures in elderly patients. CONCLUSIONS: This study's findings suggested that low-dose dasatinib would be better suited for Chinese patients, and the dosage can be appropriately reduced according to the increase of age, especially for the elderly.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Aged , Dasatinib/therapeutic use , Pharmacogenetics , East Asian People , Pyrimidines , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Protein Kinase Inhibitors/therapeutic use
5.
Cancer Chemother Pharmacol ; 92(5): 399-410, 2023 11.
Article in English | MEDLINE | ID: mdl-37624393

ABSTRACT

BACKGROUND: Imatinib is presently the first-line choice for the treatment of chronic myeloid leukemia. However, there are limited real-world data on Chinese patients to support individualized medicine. This work aims to characterize population pharmacokinetics in Chinese patients with chronic myeloid leukemia, investigate the effects of several covariates on imatinib exposure, and provide support for personalized medicine and dose reduction. METHODS: A total of 230 patients with chronic myeloid leukemia were enrolled, and 424 steady-state concentration measurements were taken to perform the population pharmacokinetic analysis and Monte Carlo simulations with Phoenix NLME software. The effects of the demographic, biological, and pharmacogenetic (ten SNP corresponding to CYP3A4, CYP3A5, ABCB1, ABCG2, SCL22A1 and POR) covariates on clearance were evaluated. RESULTS: A one-compartmental model best-described imatinib pharmacokinetics. The hemoglobin and the estimated glomerular filtration rate (< 85 mL⋅min-1⋅1.73 m2) were associated with imatinib clearance. The genetic polymorphisms related to pharmacokinetics were not found to have a significant effect on the clearance of imatinib. The final model estimates of parameters are: ka (h-1) = 0.329; Vd/F (L) = 270; CL/F (L⋅h-1) = 7.60. CONCLUSIONS: Key covariates in the study population accounting for variability in imatinib exposure are hemoglobin and the estimated glomerular filtration rate. There is some need for caution when treating patients with moderate-to-severe renal impairment and significant hemoglobin changes.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Imatinib Mesylate/therapeutic use , East Asian People , Pharmacogenetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
6.
Environ Mol Mutagen ; 64(7): 401-415, 2023 08.
Article in English | MEDLINE | ID: mdl-37522536

ABSTRACT

Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , DNA Methylation/genetics , Diet
7.
Paediatr Drugs ; 25(3): 301-319, 2023 May.
Article in English | MEDLINE | ID: mdl-36707496

ABSTRACT

As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.


Subject(s)
Pharmacogenetics , Polymorphism, Genetic , Humans , Child , Prospective Studies , Treatment Outcome
8.
Drug Metab Rev ; 54(2): 194-206, 2022 05.
Article in English | MEDLINE | ID: mdl-35412942

ABSTRACT

Interindividual differences in drug response have always existed in clinical treatment. Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) play an important role in the process of pharmacokinetics. The effects of genetic polymorphism and nuclear receptors on the expression of drug metabolism enzymes and transporters can only explain some individual differences in clinical treatment. Several key ADME genes have been demonstrated to be regulated by epigenetic mechanisms that can potentially affect inter-individual variability in medical treatment. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug response. Among them, the most studied are anti-tumor drugs, followed by anti-tuberculous and anti-platelet drugs. Therefore, we provide an epigenetics perspective on variability in drug response. The review summarizes the correlation between ADME gene expression and DNA methylation, including the exact methylation locations, and focuses on the corresponding drug disposition and effects to illuminate interindividual differences in clinical medication.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Expression , Humans , Inactivation, Metabolic/genetics , Membrane Transport Proteins/genetics
9.
Front Pharmacol ; 12: 797881, 2021.
Article in English | MEDLINE | ID: mdl-34938198

ABSTRACT

Dasatinib is an oral second-generation tyrosine kinase inhibitor known to be used widely in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL). Notably, although a high pharmacokinetic variability in patients and an increased risk of pleural effusion are attendant, fixed dosing remains standard practice. Retrospective studies have suggested that dasatinib exposure may be associated with treatment response (efficacy/safety). Therapeutic drug monitoring (TDM) is gradually becoming a practical tool to achieve the goal of individualized medicine for patients receiving targeted drugs. With the help of TDM, these patients who maintain response while have minimum adverse events may achieve long-term survival. This review summaries current knowledge of the clinical pharmacokinetics variation, exposure-response relationships and analytical method for individualized dosing of dasatinib, in particular with respect to therapeutic drug monitoring. In addition, it highlights the emerging insights into several controversial issues in TDM of dasatinib, with the aim of presenting up-to-date evidence for clinical decision-making and insights for future studies.

SELECTION OF CITATIONS
SEARCH DETAIL