Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Sheng Li Xue Bao ; 70(4): 343-353, 2018 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-30112559

ABSTRACT

Myocardial fibrosis (MF) is an important pathological process of cardiac remodeling in patients with heart failure; however its etiology has not been clear. It has been known that the angiotensin II type 1 receptor autoantibody (AT1-AA) is present in patients with heart failure, but it is unclear whether this antibody directly causes MF. In this study, we investigated the role of AT1-AA in MF and its effects on cardiac fibroblasts (CFs). The AT1-AA positive rat model was established by active immunization method, and the measurement of indexes were made in the 8th week after active immunity. The results of heart echocardiography showed that the cardiac systolic and diastolic functions of AT1-AA positive rats were impaired with reduced left ventricular wall thickness and enlarged heart chambers. HE staining results showed that the myocardial fibers were disorganized and ruptured, and Masson staining revealed that the area of collagen fibers around the myocardium and coronary arteries was significantly increased in AT1-AA positive group compared with that of the control group (P < 0.05). Moreover, primary CFs isolated from neonatal rats were cultured and treated with AT1-AA for 48 h. CCK-8 and immunofluorescence staining results showed that AT1-AA enhanced proliferation rate of CFs (P < 0.001), and Western blot results showed that AT1-AA significantly increased expressions of collagen I (Col I), Col III, matrix metalloproteinase-2 (MMP-2) and MMP-9 in CFs (all P < 0.05). Taken together, these results suggest that AT1-AA may induce MF and cardiac dysfunction via activating CFs.


Subject(s)
Autoantibodies/adverse effects , Fibroblasts/pathology , Heart Failure/physiopathology , Myocardium/pathology , Receptor, Angiotensin, Type 1/immunology , Animals , Cardiomyopathies/physiopathology , Collagen Type I/metabolism , Echocardiography , Fibrosis , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Myocytes, Cardiac/pathology , Rats
2.
Sci Rep ; 8(1): 5502, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615755

ABSTRACT

Methamphetamine (MA) abuse has been rising rapidly over the past decade, however, its impact in spatial cognitive function remains unknown. To understand its effect on visuospatial ability and spatial orientation ability, 40 MA users and 40 non-MA users conducted the Simple Reaction Task (Task 1), the Spatial Orientation Task (Task 2), and the Mental Rotation Task (Task 3), respectively. There was no significant difference in either accuracy or reaction time (RT) between 2 groups in Task 1. During Task 2, in comparison with non-MA users, MA users performed poorer on RT, but not in accuracy for foot and hand stimuli. In addition, both non-MA and MA users responded much more quickly to upward stimuli than downward stimuli on vertical surface, however, only non-MA users exhibited leftward visual field advantage in horizontal orientation processing. As for Task 3, MA users exhibited poorer performance and more errors than their healthy counterparts. For each group, linear relationship was revealed between RT and orientation angle, whereas MA abuse led to longer intercept for all stimuli involved. Our findings suggested that MA abuse may lead to a general deficit in the visuospatial ability and the spatial orientation ability with more serious impact in the former.


Subject(s)
Amphetamine-Related Disorders/physiopathology , Cognition/drug effects , Methamphetamine/pharmacology , Spatial Behavior/drug effects , Adult , Female , Humans , Male , Orientation, Spatial/drug effects , Spatial Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL