Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters










Publication year range
1.
Pharmacol Rev ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866561

ABSTRACT

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

2.
Article in English | MEDLINE | ID: mdl-38864771

ABSTRACT

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of the disease initiation. Recent findings suggest that STING (stimulator of interferon genes) activation plays a critical role in the endothelial dysfunction and interferon signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. PH patients and rodent PH model samples, Sugen5416/hypoxia (SuHx) PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic GMP-AMP (cGAS)-STING signaling pathway was activated in the lung tissues from rodent PH models and PH patients, and in the TNF-α induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cell in PH disease settings. In SuHx mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration in PAECs. Mechanistically, STING transcriptional regulates its binding partner F2RL3 through STING-NF-κB axis, which activated the interferon signaling and repressed the BMPR2 signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression levels between STING and F2RL3/interferon-stimulated genes (ISGs) was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.

3.
Circ Res ; 135(1): 76-92, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38747146

ABSTRACT

BACKGROUND: Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS: Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine -modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. RESULTS: This modification occurs at the position 5 of the tRF-1-AspGTC (5o8G tRF). Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A (Wingless-type MMTV integration site family, member 5A) and CASP3 (Caspase3) and inhibited their expression. Ultimately, BMPR2 (Bone morphogenetic protein receptor 2) -reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS: Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.


Subject(s)
Biomarkers , Bone Morphogenetic Protein Receptors, Type II , Hypertension, Pulmonary , Pulmonary Artery , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/etiology , Humans , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Animals , Biomarkers/metabolism , Biomarkers/blood , Pulmonary Artery/metabolism , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Male , Oxidative Stress , Caspase 3/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Apoptosis , Cells, Cultured , Vascular Remodeling , Female , Rats , Reactive Oxygen Species/metabolism , Muscle, Smooth, Vascular/metabolism
4.
Neural Regen Res ; 19(12): 2684-2697, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595287

ABSTRACT

Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.

5.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574977

ABSTRACT

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Subject(s)
Dopaminergic Neurons , Ferroptosis , Mitophagy , Parkinson Disease , Sodium-Potassium-Exchanging ATPase , Animals , Mitophagy/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Parkinson Disease/drug therapy , Humans , Male , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Haploinsufficiency , Mice, Knockout
6.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38395698

ABSTRACT

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Subject(s)
Microglia , Receptors, Purinergic P2X7 , Animals , Mice , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Anxiety , Microglia/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
7.
Circulation ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214194

ABSTRACT

BACKGROUND: Pulmonary hypertension, characterized by vascular remodeling, currently lacks curative therapeutic options. The dysfunction of pulmonary artery endothelial cells plays a pivotal role in the initiation and progression of pulmonary hypertension (PH). ErbB3 (human epidermal growth factor receptor 3), also recognized as HER3, is a member of the ErbB family of receptor tyrosine kinases. METHODS: Microarray, immunofluorescence, and Western blotting analyses were conducted to investigate the pathological role of ErbB3. Blood samples were collected for biomarker examination from healthy donors or patients with hypoxic PH. The pathological functions of ErbB3 were further validated in rodents subjected to chronic hypoxia- and Sugen-induced PH, with or without adeno-associated virus-mediated ErbB3 overexpression, systemic deletion, or endothelial cell-specific ErbB3 knockdown. Primary human pulmonary artery endothelial cells and pulmonary artery smooth muscle cells were used to elucidate the underlying mechanisms. RESULTS: ErbB3 exhibited significant upregulation in the serum, lungs, distal pulmonary arteries, and pulmonary artery endothelial cells isolated from patients with PH compared with those from healthy donors. ErbB3 overexpression stimulated hypoxia-induced endothelial cell proliferation, exacerbated pulmonary artery remodeling, elevated systolic pressure in the right ventricle, and promoted right ventricular hypertrophy in murine models of PH. Conversely, systemic deletion or endothelial cell-specific knockout of ErbB3 yielded opposite effects. Coimmunoprecipitation and proteomic analysis identified YB-1 (Y-box binding protein 1) as a downstream target of ErbB3. ErbB3 induced nuclear translocation of YB-1 and subsequently promoted hypoxia-inducible factor 1/2α transcription. A positive loop involving ErbB3-periostin-hypoxia-inducible factor 1/2α was identified to mediate the progressive development of this disease. MM-121, a human anti-ErbB3 monoclonal antibody, exhibited both preventive and therapeutic effects against hypoxia-induced PH. CONCLUSIONS: Our study reveals, for the first time, that ErbB3 serves as a novel biomarker and a promising target for the treatment of PH.

8.
Acta Pharm Sin B ; 13(12): 4840-4855, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045055

ABSTRACT

Pulmonary hypertension (PH) is an extremely malignant pulmonary vascular disease of unknown etiology. ADAR1 is an RNA editing enzyme that converts adenosine in RNA to inosine, thereby affecting RNA expression. However, the role of ADAR1 in PH development remains unclear. In the present study, we investigated the biological role and molecular mechanism of ADAR1 in PH pulmonary vascular remodeling. Overexpression of ADAR1 aggravated PH progression and promoted the proliferation of pulmonary artery smooth muscle cells (PASMCs). Conversely, inhibition of ADAR1 produced opposite effects. High-throughput whole transcriptome sequencing showed that ADAR1 was an important regulator of circRNAs in PH. CircCDK17 level was significantly lowered in the serum of PH patients. The effects of ADAR1 on cell cycle progression and proliferation were mediated by circCDK17. ADAR1 affects the stability of circCDK17 by mediating A-to-I modification at the A5 and A293 sites of circCDK17 to prevent it from m1A modification. We demonstrate for the first time that ADAR1 contributes to the PH development, at least partially, through m1A modification of circCDK17 and the subsequent PASMCs proliferation. Our study provides a novel therapeutic strategy for treatment of PH and the evidence for circCDK17 as a potential novel marker for the diagnosis of this disease.

9.
Metabolism ; 145: 155579, 2023 08.
Article in English | MEDLINE | ID: mdl-37127227

ABSTRACT

BACKGROUND: Na+/K+-ATPase (NKA), an ion pumping enzyme ubiquitously expressed in various cells, is critically involved in cellular ion homeostasis and signal transduction. However, the role of NKA in hepatic lipid homeostasis has yet to be fully characterized. METHODS: The activity of NKA and NKAα1 expression were determined in steatotic cells, mice and patients. The roles of NKAα1 in hepatosteatosis were detected using hepatocyte knockout or specific overexpression of NKAα1 in mice. RESULTS: Herein, we demonstrated that the expression and activity of α1 subunit of NKA (NKAα1) were lowered in the livers of nonalcoholic fatty liver disease (NAFLD) patients, high-fat diet (HFD)-induced obese mice, and genetically obese (ob/ob, db/db) mice, as well as oleic acid-induced hepatocytes. Hepatic deficiency of NKAα1 exacerbated, while adeno-associated virus-mediated liver specific overexpression of NKAα1 alleviated hepatic steatosis through regulation of fatty acid oxidation (FAO) and lipogenesis. Mechanistically, we revealed that NKAα1 upregulated sirtuin 1 (SIRT1) via interacting with ubiquitin specific peptidase 22 (USP22), a deubiquitinating enzyme for the stabilization and deubiquitination of SIRT1, thus activating the downstream autophagy signaling. Blockade of the SIRT1/autophagy signaling pathway eliminated the protective effects of NKAα1 against lipid deposition in hepatocytes. Importantly, we found that an antibody against the DR region (897DVEDSYGQQWTYEQR911) of NKAα1 subunit (DR-Ab) ameliorated hepatic steatosis through maintaining the membrane density of NKAα1 and inducing its activation. CONCLUSIONS: Collectively, this study renews the functions of NKAα1 in liver lipid metabolism and provides a new clue for gene therapy or antibody treatment of hepatic lipid metabolism disturbance by targeting NKAα1.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Mice , Animals , Mice, Obese , Sirtuin 1/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Hepatocytes/metabolism , Oleic Acid/metabolism , Oleic Acid/pharmacology , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
10.
Free Radic Biol Med ; 204: 38-53, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37100355

ABSTRACT

Doxorubicin (DOX) is a potent chemotherapeutic drug for various cancers. Yet, the cardiotoxic side effects limit its application in clinical uses, in which ferroptosis serves as a crucial pathological mechanism in DOX-induced cardiotoxicity (DIC). A reduction of Na+/K + ATPase (NKA) activity is closely associated with DIC progression. However, whether abnormal NKA function was involved in DOX-induced cardiotoxicity and ferroptosis remains unknown. Here, we aim to decipher the cellular and molecular mechanisms of dysfunctional NKA in DOX-induced ferroptosis and investigate NKA as a potential therapeutic target for DIC. A decrease activity of NKA further aggravated DOX-triggered cardiac dysfunction and ferroptosis in NKAα1 haploinsufficiency mice. In contrast, antibodies against the DR-region of NKAα-subunit (DR-Ab) attenuated the cardiac dysfunction and ferroptosis induced by DOX. Mechanistically, NKAα1 interacted with SLC7A11 to form a novel protein complex, which was directly implicated in the disease progression of DIC. Furthermore, the therapeutic effect of DR-Ab on DIC was mediated by reducing ferroptosis by promoting the association of NKAα1/SLC7A11 complex and maintaining the stability of SLC7A11 on the cell surface. These results indicate that antibodies targeting the DR-region of NKA may serve as a novel therapeutic strategy to alleviate DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Heart Diseases , Mice , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Adenosine Triphosphatases/metabolism , Myocytes, Cardiac/metabolism , Doxorubicin/pharmacology , Heart Diseases/pathology , Antibodies/metabolism , Apoptosis , Oxidative Stress
11.
Antioxidants (Basel) ; 12(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36671068

ABSTRACT

Dietary flavones 6,3´,4´-trihydroxyflavone (6,3´,4´-HOFL) and 7,3´,4´-trihydroxyflavone (7,3´,4´-HOFL) showed preliminary antioxidant and anti-inflammatory activities in a two-dimensional (2D) cell culture model. However, their action mechanisms remain unclear, and the anti-inflammatory activities have not been studied in a reliable three-dimensional (3D) cell model. Therefore, in the current study, the antioxidant potency was examined by their scavenging ability of cellular reactive oxygen species. Anti-inflammatory activities were examined via their inhibitory effects on inflammatory mediators in vitro on 2D and 3D macrophage models, and their mechanisms were determined through transcriptome. In the 3D macrophages, two flavones were less bioactive than they were in 2D macrophages, but they both significantly suppressed the overexpression of proinflammatory mediators in two cell models. The divergent position of the hydroxyl group on the A ring resulted in activity differences. Compared to 6,3´,4´-HOFL, 7,3´,4´-HOFL showed lower activity on NO, IL-1ß suppression, and c-Src binding (IC50: 12.0 and 20.9 µM) but higher ROS-scavenging capacity (IC50: 3.20 and 2.71 µM) and less cytotoxicity. In addition to the IL-17 and TNF pathways of 6,3´,4´-HOFL, 7,3´,4´-HOFL also exerted anti-inflammatory activity through JAK-STAT, as indicated by the RNA-sequencing results. Two flavones showed prominent antioxidant and anti-inflammatory activities on 2D and 3D models.

12.
Antioxid Redox Signal ; 38(1-3): 18-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36310428

ABSTRACT

Significance: Diabetes and its related complications are becoming an increasing public health problem that affects hundreds of millions of people globally. Increased disability and mortality rate of diabetic individuals are closely associated with various life-threatening complications, such as atherosclerosis, nephropathy, retinopathy, and cardiomyopathy. Recent Advances: Conventional treatments for diabetes are still limited because of undesirable side effects, including obesity, hypoglycemia, and hepatic and renal toxicity. Studies have shown that hydrogen sulfide (H2S) plays a critical role in the modulation of glycolipid metabolism, pancreatic ß cell functions, and diabetic complications. Critical Issues: Preservation of endogenous H2S systems and supplementation of H2S donors are effective in attenuating diabetes-induced complications, thus representing a new avenue to treat diabetes and its associated complications. Future Directions: This review systematically recapitulates and discusses the most recent updates regarding the therapeutic effects of H2S on diabetes and its various complications, with an emphasis on the molecular mechanisms that underlie H2S-mediated protection against diabetic complications. Furthermore, current clinical trials of H2S in diabetic populations are highlighted, and the challenges and solutions to the clinical transformation of H2S-derived therapies in diabetes are proposed. Finally, future research directions of the pharmacological actions of H2S in diabetes and its related complications are summarized. Antioxid. Redox Signal. 38, 18-44.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Hydrogen Sulfide , Humans , Hydrogen Sulfide/metabolism , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Mellitus/drug therapy , Liver/metabolism
13.
Antioxid Redox Signal ; 38(1-3): 1-17, 2023 01.
Article in English | MEDLINE | ID: mdl-36322712

ABSTRACT

Aims: Diabetic cardiomyopathy (DCM) is characterized by cardiac dysfunction and heart failure. However, the effective therapy for DCM is still lacking. Polysulfide contains chains of sulfur atoms, and accumulative evidence has shown that it actively participates in mammalian physiology or pathophysiology. Nevertheless, the potential effects and mechanisms of polysulfide in DCM need further investigation. In the present study, Na2S4, a polysulfide donor, was employed to investigate the therapeutic effects of polysulfide in DCM. Results: Our results showed that Na2S4 protected cardiomyocytes against high glucose (HG)-induced cardiomyocyte injury. The pathological changes in DCM including cell death, oxidative stress, mitochondrial dysfunction and cardiac hypertrophy were improved by Na2S4 treatment. The left ventricular contractile function in streptozotocin (STZ)-induced diabetic mice was significantly improved by Na2S4. Mechanistically, Na2S4 upregulated and sulfhydrated peroxisome proliferator-activated receptor-γ (PPARγ) and sirtuin 3 (SIRT-3) in cardiomyocytes. Suppression of PPARγ or SIRT-3 with their specific inhibitors or blockade of sulfhydration abolished the protective effects of Na2S4. Moreover, mutations of PPARγ or SIRT-3 at specific cysteines diminished the benefits of Na2S4 in HG-challenged cardiomyocytes. Innovation and Conclusion: We demonstrated that Na2S4 prevented the development of DCM via sulfhydration of both PPARγ and SIRT-3. Our results imply that polysulfide may be a potential and promising agent to treat DCM. Antioxid. Redox Signal. 38, 1-17.


Subject(s)
Diabetic Cardiomyopathies , PPAR gamma , Sirtuin 3 , Sulfides , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Mammals/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , PPAR gamma/metabolism , Sirtuin 3/metabolism , Sulfides/pharmacology , Sulfides/therapeutic use
14.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: mdl-36552839

ABSTRACT

Na+/K+-ATPase (NKA), a large transmembrane protein, is expressed in the plasma membrane of most eukaryotic cells. It maintains resting membrane potential, cell volume and secondary transcellular transport of other ions and neurotransmitters. NKA consumes about half of the ATP molecules in the brain, which makes NKA highly sensitive to energy deficiency. Neurodegenerative diseases (NDDs) are a group of diseases characterized by chronic, progressive and irreversible neuronal loss in specific brain areas. The pathogenesis of NDDs is sophisticated, involving protein misfolding and aggregation, mitochondrial dysfunction and oxidative stress. The protective effect of NKA against NDDs has been emerging gradually in the past few decades. Hence, understanding the role of NKA in NDDs is critical for elucidating the underlying pathophysiology of NDDs and identifying new therapeutic targets. The present review focuses on the recent progress involving different aspects of NKA in cellular homeostasis to present in-depth understanding of this unique protein. Moreover, the essential roles of NKA in NDDs are discussed to provide a platform and bright future for the improvement of clinical research in NDDs.


Subject(s)
Neurodegenerative Diseases , Sodium-Potassium-Exchanging ATPase , Humans , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium/metabolism , Membrane Potentials , Ions/metabolism
16.
Biomolecules ; 12(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35740920

ABSTRACT

The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , RNA, Long Noncoding , Biomarkers , Humans , Hypertension, Pulmonary/genetics , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics
17.
Biochem Pharmacol ; 199: 115008, 2022 05.
Article in English | MEDLINE | ID: mdl-35318039

ABSTRACT

As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.


Subject(s)
Carbon Monoxide , Hypertension , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Carbon Monoxide/therapeutic use , Humans , Hypertension/drug therapy , Hypertension/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
18.
J Mol Med (Berl) ; 100(3): 395-410, 2022 03.
Article in English | MEDLINE | ID: mdl-34839371

ABSTRACT

Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.


Subject(s)
Ischemic Stroke , Sodium-Potassium-Exchanging ATPase , Autophagy , Humans , Ions/metabolism , Ions/pharmacology , Ischemic Stroke/drug therapy , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/pharmacology
19.
Front Pharmacol ; 12: 651884, 2021.
Article in English | MEDLINE | ID: mdl-34764865

ABSTRACT

Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.

20.
Front Pharmacol ; 12: 661601, 2021.
Article in English | MEDLINE | ID: mdl-34366840

ABSTRACT

Hydrogen sulfide (H2S) has been recognized as the third gasotransmitter, following nitric oxide and carbon monoxide, and it exerts important biological effects in the body. Growing evidence has shown that H2S is involved in many physiological processes in the body. In recent years, much research has been carried out on the role of H2S in bone metabolism. Bone metabolic diseases have been linked to abnormal endogenous H2S functions and metabolism. It has been found that H2S plays an important role in the regulation of bone diseases such as osteoporosis and osteoarthritis. Regulation of H2S on bone metabolism has many interacting signaling pathways at the molecular level, which play an important role in bone formation and absorption. H2S releasing agents (donors) have achieved significant effects in the treatment of metabolic bone diseases such as osteoporosis and osteoarthritis. In addition, H2S donors and related drugs have been widely used as research tools in basic biomedical research and may be explored as potential therapeutic agents in the future. Donors are used to study the mechanism and function of H2S as they release H2S through different mechanisms. Although H2S releasers have biological activity, their function can be inconsistent. Additionally, donors have different H2S release capabilities, which could lead to different effects. Side effects may form with the formation of H2S; however, it is unclear whether these side effects affect the biological effects of H2S. Therefore, it is necessary to study H2S donors in detail. In this review, we summarize the current information about H2S donors related to bone metabolism diseases and discuss some mechanisms and biological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...