Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharm Sci ; 160: 105772, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33621612

ABSTRACT

Understanding the intra-tumoral distribution of chemotherapeutic drugs is extremely important in predicting therapeutic outcome. Tissue mimicking gel phantoms are useful for studying drug distribution in vitro but quantifying distribution is laborious due to the need to section phantoms over the relevant time course and individually quantify drug elution. In this study we compare a bespoke version of the traditional phantom sectioning approach, with a novel confocal microscopy technique that enables dynamic in situ measurements of drug concentration. Release of doxorubicin from Drug-eluting Embolization Beads (DEBs) was measured in phantoms composed of alginate and agarose over comparable time intervals. Drug release from several different types of bead were measured. The non-radiopaque DC Bead™ generated a higher concentration at the boundary between the beads and the phantom and larger drug penetration distance within the release period, compared with the radiopaque DC Bead LUMI™. This is likely due to the difference of compositional and structural characteristics of the hydrogel beads interacting differently with the loaded drug. Comparison of in vitro results against historical in vivo data show good agreement in terms of drug penetration, when confounding factors such as geometry, elimination and bead chemistry were accounted for. Hence these methods have demonstrated potential for both bead and gel phantom validation, and provide opportunities for optimisation of bead design and embolization protocols through in vitro-in vivo comparison.


Subject(s)
Chemoembolization, Therapeutic , Drug Carriers , Doxorubicin , Drug Liberation , Microspheres
2.
Rev Sci Instrum ; 88(3): 034302, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372398

ABSTRACT

The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.


Subject(s)
Acoustics , Drug Delivery Systems , Ultrasonography , Multimodal Imaging , Phantoms, Imaging , Physical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL