Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 17(1): 198, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132307

ABSTRACT

BACKGROUND: Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. RESULTS: We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. CONCLUSIONS: Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Lithospermum/metabolism , Naphthoquinones/metabolism , ATP-Binding Cassette Transporters/genetics , Biological Transport , Blotting, Southern , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genes, Plant/physiology , Plant Roots/metabolism , Plants, Genetically Modified , Sequence Analysis, DNA
2.
Sci Rep ; 7(1): 4477, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667265

ABSTRACT

Shikonin and its derivatives extracted from Lithospermeae plants' red roots have current applications in food and pharmaceutical industries. Previous studies have cloned some genes related to shikonin biosynthesis. However, most genes related to shikonin biosynthesis remain unclear, because the lack of the genome/transcriptome of the Lithospermeae plants. Therefore, in order to provide a new understanding of shikonin biosynthesis, we obtained transcriptome data and unigenes expression profiles in three shikonin-producing Lithospermeae plants, i.e., Lithospermum erythrorhizon, Arnebia euchroma and Echium plantagineum. As a result, two unigenes (i.e., G10H and 12OPR) that are involved in "shikonin downstream biosynthesis" and "methyl jasmonate biosynthesis" were deemed to relate to shikonin biosynthesis in this study. Furthermore, we conducted a Lamiids phylogenetic model and identified orthologous unigenes under positive selection in above three Lithospermeae plants. The results indicated Boraginales was more relative to Solanales/Gentianales than to Lamiales.


Subject(s)
Biological Evolution , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Lithospermum/genetics , Lithospermum/metabolism , Naphthoquinones/metabolism , Transcriptome , Boraginaceae/genetics , Boraginaceae/metabolism , Chromatography, High Pressure Liquid , Computational Biology/methods , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Lithospermum/classification , Molecular Sequence Annotation , Naphthoquinones/analysis , Phylogeny , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...