Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Syst Appl Microbiol ; 42(2): 205-216, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30551956

ABSTRACT

Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T=LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T=LMG 30143T), reference strain XV4.


Subject(s)
Bees/microbiology , Bifidobacterium/classification , Gastrointestinal Tract/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Bifidobacterium/isolation & purification , Chaperonin 60/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Italy , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Int J Syst Evol Microbiol ; 68(2): 575-581, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29300153

ABSTRACT

In our previous study based on hsp60 PCR-restriction fragment length polymorphism and 16S rRNA gene sequencing, we stated that the bifidobacterial strains isolated from the individual faecal samples of five baby common marmosets constituted different phylogenetically isolated groups of the genus Bifidobacterium. In that study, we also proposed that these isolated groups potentially represented novel species of the genus Bifidobacterium. Out of them, Bifidobacterium aesculapii, Bifidobacterium myosotis, Bifidobacterium tissieri and Bifidobacterium hapali, have been described recently. Another strain, designated MRM 8.19T, has been classified as member of the genus Bifidobacterium on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA, hsp60, clpC, dnaJ, dnaG and rpoB gene sequences. Analysis of 16S rRNA and hsp60 gene sequences revealed that strain MRM 8.19T was related to B. tissieri DSM 100201T (95.8 %) and to Bifidobacterium bifidum ATCC 29521T (93.7 %), respectively. The DNA G+C composition was 63.7 mol% and the peptidoglycan structure was l-Orn(Lys)-l-Ser. Based on the phylogenetic, genotypic and phenotypic data reported, strain MRM 8.19T represents a novel taxon within the genus Bifidobacterium for which the name Bifidobacterium catulorum sp. nov. (type strain MRM 8.19T=DSM 103154T=JCM 31794T) is proposed.


Subject(s)
Bifidobacterium/classification , Callithrix/microbiology , Phylogeny , Aldehyde-Lyases/genetics , Animals , Bacterial Typing Techniques , Base Composition , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Chaperonin 60/genetics , DNA, Bacterial/genetics , Feces/microbiology , Genes, Bacterial , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Electron. j. biotechnol ; 30: 83-87, nov. 2017. graf, tab
Article in English | LILACS | ID: biblio-1021898

ABSTRACT

Background: ß-Glucosidase assay is performed with purified or semipurified enzymes extracted from cell lysis. However, in screening studies, to find bacteria with ß-glucosidase activity among many tested bacteria, a fast method without cell lysis is desirable. In that objective, we report an in vivo ß-glucosidase assay as a fast method to find a ß-glucosidase producer strain. Results: The method consists in growing the strains for testing in a medium supplemented with the artificial substrate p-nitrophenyl-ß-glucopyranoside (pNPG). The presence of ß-glucosidases converts the substrate to p-nitrophenol (pNP), a molecule that can be easily measured in the supernatant spectrophotometrically at 405 nm. The assay was evaluated using two Bifidobacterium strains: Bifidobacterium longum B7254 strain that lacks ß-glucosidase activity and Bifidobacterium pseudocatenulatum B7003 strain that shows ß-glucosidase activity. The addition of sodium carbonate during pNP measurement increases the sensitivity of pNP detection and avoids the masking of absorbance by the culture medium. Furthermore, we show that pNP is a stable enzymatic product, not metabolized by bacteria, but with an inhibitory effect on cell growth. The ß-glucosidase activity was measured as units of enzyme per gram per minute per dry cell weight. This method also allowed the identification of Lactobacillus strains with higher ß-glucosidase activity among several lactobacillus species. Conclusion: This in vivo ß-glucosidase assay can be used as an enzymatic test on living cells without cell disruption. The method is simple, quantitative, and recommended, especially in studies screening for bacteria not only with ß-glucosidase activity but also with high ß-glucosidase activity.


Subject(s)
Bifidobacterium/isolation & purification , Bifidobacterium/enzymology , beta-Glucosidase/metabolism , Bifidobacterium/metabolism , Nitrophenylgalactosides , Enzyme Assays , Bifidobacterium longum/isolation & purification , Bifidobacterium longum/enzymology , Bifidobacterium pseudocatenulatum/isolation & purification , Bifidobacterium pseudocatenulatum/enzymology , Lactobacillus/isolation & purification , Lactobacillus/enzymology , Lactobacillus/metabolism , Nitrophenols
5.
PLoS One ; 11(6): e0157527, 2016.
Article in English | MEDLINE | ID: mdl-27332552

ABSTRACT

The faecal microbiota composition of infants born to mothers receiving intrapartum antibiotic prophylaxis with ampicillin against group B Streptococcus was compared with that of control infants, at day 7 and 30 of life. Recruited newborns were both exclusive breastfed and mixed fed, in order to also study the effect of dietary factors on the microbiota composition. Massive parallel sequencing of the V3-V4 region of the 16S rRNA gene and qPCR analysis were performed. Antibiotic prophylaxis caused the most marked changes on the microbiota in breastfed infants, mainly resulting in a higher relative abundance of Enterobacteriaceae, compared with control infants (52% vs. 14%, p = 0.044) and mixed-fed infants (52% vs. 16%, p = 0.13 NS) at day 7 and in a lower bacterial diversity compared to mixed-fed infants and controls. Bifidobacteria were also particularly vulnerable and abundances were reduced in breastfed (p = 0.001) and mixed-fed antibiotic treated groups compared to non-treated groups. Reductions in bifidobacteria in antibiotic treated infants were also confirmed by qPCR. By day 30, the bifidobacterial population recovered and abundances significantly increased in both breastfed (p = 0.025) and mixed-fed (p = 0.013) antibiotic treated groups, whereas Enterobacteriaceae abundances remained highest in the breastfed antibiotic treated group (44%), compared with control infants (16%) and mixed-fed antibiotic treated group (28%). This study has therefore demonstrated the short term consequences of maternal intrapartum antibiotic prophylaxis on the infant faecal microbial population, particularly in that of breastfed infants.


Subject(s)
Antibiotic Prophylaxis , Gastrointestinal Microbiome , Streptococcal Infections/drug therapy , Streptococcal Infections/prevention & control , Streptococcus agalactiae/physiology , Biodiversity , Breast Feeding , Colony Count, Microbial , Diet , Feces/microbiology , Female , Humans , Infant, Newborn , Male , Phylogeny , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Streptococcal Infections/microbiology
6.
Syst Appl Microbiol ; 39(4): 229-236, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27236565

ABSTRACT

Forty-five microorganisms were isolated on bifidobacteria selective medium from one faecal sample of an adult subject of the cotton-top tamarin (Saguinus oedipus L.). All isolates were Gram-positive, catalase-negative, anaerobic, fructose-6-phosphate phosphoketolase positive, and asporogenous rod-shaped bacteria. In this study, only eight out of the forty-five strains were characterized more deeply, whereas the others are still currently under investigation. They were grouped by BOX-PCR into three clusters: Cluster I (TRE 17(T), TRE 7, TRE 26, TRE 32, TRE 33, TRE I), Cluster II (TRE C(T)), and Cluster III (TRE M(T)). Comparative analysis of 16S rRNA gene sequences confirmed the results from the cluster analysis and revealed relatively low level similarities to each other (mean value 95%) and to members of the genus Bifidobacterium. All eight isolates showed the highest level of 16S rRNA gene sequence similarities with Bifidobacterium scardovii DSM 13734(T) (mean value 96.6%). Multilocus sequence analysis (MLSA) of five housekeeping genes (hsp60, rpoB, clpC, dnaJ and dnaG) supported their independent phylogenetic position to each other and to related species of Bifidobacterium. The G+C contents were 63.2%, 65.9% and 63.0% for Cluster I, Cluster II and Cluster III, respectively. Peptidoglycan types were A3α l-Lys-l-Thr-l-Ala, A4ß l-Orn (Lys)-d-Ser-d-Glu and A3ß l-Orn-l-Ser-l-Ala in Clusters I, II and III, respectively. Based on the data provided, each cluster represented a novel taxon for which the names Bifidobacterium aerophilum sp. nov. (TRE 17(T)=DSM 100689=JCM 30941; TRE 26=DSM 100690=JCM 30942), Bifidobacterium avesanii sp. nov. (TRE C(T)=DSM 100685=JCM 30943) and Bifidobacterium ramosum sp. nov. (TRE M=DSM 100688=JCM 30944) are proposed.


Subject(s)
Bifidobacterium , Multilocus Sequence Typing , Saguinus/microbiology , Aldehyde-Lyases/genetics , Animals , Base Composition , Base Sequence , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Chaperonin 60/genetics , DNA Primase/genetics , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Feces/microbiology , HSP40 Heat-Shock Proteins/genetics , Peptidoglycan/classification , Peptidoglycan/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Int J Syst Evol Microbiol ; 66(3): 1567-1576, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26823373

ABSTRACT

Forty-three strains of bifidobacteria were isolated from the faeces of two adult black lemurs, Eulemur macaco. Thirty-four were identified as Bifidobacterium lemurum, recently described in Lemur catta. The nine remaining isolates were Gram-positive-staining, non-spore-forming, fructose-6-phosphate phosphoketolase-positive, microaerophilic, irregular rod-shaped bacteria that often presented Y- or V-shaped cells. Typing techniques revealed that these isolates were nearly identical, and strain LMM_E3T was chosen as a representative and characterized further. Phylogenetic analysis based on 16S rRNA gene sequences clustered this isolate inside the genus Bifidobacterium and showed the highest levels of sequence similarity with B. lemurum DSM 28807T (99.3 %), with Bifidobacterium pullorum LMG 21816T and Bifidobacterium longum subsp. infantis ATCC 15697T (96.4 and 96.3 %, respectively) as the next most similar strains. The hsp60 gene sequence of strain LMM_E3T showed the highest similarity to that of Bifidobacterium stellenboschense DSM 23968T (93.3 %), and 91.0 % similarity to that of the type strain of B. lemurum. DNA-DNA reassociation with the closest neighbour B. lemurum DSM 28807T was found to be 65.4 %. The DNA G+C content was 62.3 mol%. Strain LMM_E3T showed a peptidoglycan structure that has not been detected in bifidobacteria so far: A3α l-Lys-l-Ser-l-Thr-l-Ala. Based on the phylogenetic, genotypic and phenotypic data, strain LMM_E3T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium eulemuris sp. nov. is proposed; the type strain is LMM_E3T ( = DSM 100216T = JCM 30801T).

8.
Int J Syst Evol Microbiol ; 66(1): 255-265, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26515885

ABSTRACT

In a previous study on bifidobacterial distribution in New World monkeys, six strains belonging to the Bifidobacteriaceae were isolated from faecal samples of baby common marmosets (Callithrix jacchus L.). All the isolates were Gram-positive-staining, anaerobic, asporogenous and fructose-6-phosphate phosphoketolase-positive. Comparative analysis of 16S rRNA gene sequences revealed relatively low levels of similarity (maximum identity 96 %) to members of the genus Bifidobacterium, and placed the isolates in three independent clusters: strains of cluster I (MRM_5.9T and MRM_5.10) and cluster III (MRM_5.18T and MRM_9.02) respectively showed 96.4 and 96.7 % 16S rRNA gene sequence similarity to Bifidobacterium callitrichos DSM 23973T, while strains of cluster II (MRM_8.14T and MRM_9.14) showed 95.4 % similarity to Bifidobacterium stellenboschense DSM 23968T. Phylogenetic analysis of partial hsp60 and clpC gene sequences supported an independent phylogenetic position of each cluster from each other and from the related type strains B. callitrichos DSM 23973T and B. stellenboschense DSM 23968T. Clusters I, II and III respectively showed DNA G+C contents of 64.9-65.1, 56.4-56.7 and 63.1-63.7 mol%. The major cellular fatty acids of MRM_5.9T were C14 : 0, C16 : 0 and C18 : 1ω9c dimethylacetal, while C16 : 0 was prominent in strains MRM_5.18T and MRM_8.14T, followed by C18 : 1ω9c and C14 : 0. Biochemical profiles and growth parameters were recorded for all the isolates. Based on the data provided, the clusters represent three novel species, for which the names Bifidobacterium myosotis sp. nov. (type strain MRM_5.9T = DSM 100196T = JCM 30796T), Bifidobacterium hapali sp. nov. (type strain MRM_8.14T = DSM 100202T = JCM 30799T) and Bifidobacterium tissieri sp. nov. (type strain MRM_5.18T = DSM 100201T = JCM 30798T) are proposed.


Subject(s)
Callithrix/microbiology , Feces/microbiology , Phylogeny , Aldehyde-Lyases/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Typing Techniques , Base Composition , Bifidobacterium/classification , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Chaperonin 60/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Heat-Shock Proteins/genetics , Molecular Sequence Data , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
BMC Microbiol ; 15: 242, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26518441

ABSTRACT

BACKGROUND: Fusarium head blight (FHB) is a severe disease caused by different Fusarium species, which affects a wide range of cereal crops, including wheat. It determines from 10 to 30% of yield loss in Europe. Chemical fungicides are mainly used to reduce the incidence of FHB, but low environmental impact solutions are looked forward. Applications of soil/rhizobacteria as biocontrol agents against FHB in wheat are described in literature, whereas the potential use of lactobacilli in agriculture has scarcely been explored. RESULTS: The aim of this work was to study the inhibitory effect of two bacterial strains, Lactobacillus plantarum SLG17 and Bacillus amyloliquefaciens FLN13, against Fusarium spp. in vitro and to assess their efficacy in field, coupled to the study of the microbial community profile of wheat seeds. Antimicrobial assays were performed on agar plates and showed that the two antagonistic strains possessed antimicrobial activity against Fusarium spp. In the field study, a mixture of the two strains was applied to durum wheat i) weekly from heading until anthesis and ii) at flowering, compared to untreated and fungicide treated plots. The FHB index, combining both disease incidence and disease severity, was used to evaluate the extent of the disease on wheat. A mixture of the two microorganisms, when applied in field from heading until anthesis, was capable of reducing the FHB index. Microbial community profile of seeds was studied via PCR-DGGE, showing the presence of L. plantarum SLG17 in wheat seeds and thus underlining an endophytic behavior of the strain. CONCLUSIONS: L. plantarum SLG17 and B. amyloliquefaciens FLN13, applied as biocontrol agents starting from the heading period until anthesis of wheat plants, are promising agents for the reduction of FHB index.


Subject(s)
Antibiosis , Bacillus/physiology , Fusarium/growth & development , Lactobacillus plantarum/physiology , Pest Control, Biological/methods , Plant Diseases/microbiology , Triticum/microbiology , Agricultural Inoculants/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Denaturing Gradient Gel Electrophoresis , Microscopy, Electron, Scanning , Plant Diseases/prevention & control , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
EPMA J ; 6(1): 13, 2015.
Article in English | MEDLINE | ID: mdl-26110044

ABSTRACT

BACKGROUND: Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). METHODS: We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. RESULTS: All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. CONCLUSION: LAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation. AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.

11.
Syst Appl Microbiol ; 38(5): 305-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26007614

ABSTRACT

The species Bifidobacterium longum is currently divided into three subspecies, B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis. This classification was based on an assessment of accumulated information on the species' phenotypic and genotypic features. The three subspecies of B. longum were investigated using genotypic identification [amplified-fragment length polymorphism (AFLP), multilocus sequence analysis (MLSA) and multilocus sequence typing (MLST)]. By using the AFLP and the MLSA methods, we allocated 25 strains of B. longum into three major clusters corresponding to the three subspecies; the cluster comprising the strains of B. longum subsp. suis was further divided into two subclusters differentiable by the ability to produce urease. By using the MLST method, the 25 strains of B. longum were divided into eight groups: four major groups corresponding to the results obtained by AFLP and MLSA, plus four minor disparate groups. The results of AFLP, MLSA and MLST analyses were consistent and revealed a novel subspeciation of B. longum, which comprised three known subspecies and a novel subspecies of urease-negative B. longum, for which the name B. longum subsp. suillum subsp. nov. is proposed, with type strain Su 851(T)=DSM 28597(T)=JCM 19995(T).


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Bifidobacterium/classification , Bifidobacterium/genetics , Feces/microbiology , Genotype , Multilocus Sequence Typing , Animals , Animals, Newborn , Bifidobacterium/isolation & purification , Cluster Analysis , Molecular Sequence Data , Sequence Analysis, DNA , Swine
12.
Int J Syst Evol Microbiol ; 65(Pt 6): 1726-1734, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25736415

ABSTRACT

Four Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from a faecal sample of a 5-year-old ring-tailed lemur (Lemur catta). The strains showed a peculiar morphology, resembling a small coiled snake, a ring shape, or forming a little 'Y' shape. The isolated strains appeared identical, and LMC 13T was chosen as a representative strain and characterized further. Strain LMC 13T showed an A3ß peptidoglycan type, similar to that found in Bifidobacterium longum. The DNA base composition was 57.2 mol% G+C. Almost-complete 16S rRNA, hsp60, rpoB, dnaJ, dnaG, purF, clpC and rpoC gene sequences were obtained, and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strain LMC 13T showed the highest similarity to B. longum subsp. suis ATCC 27533T (96.65 %) and Bifidobacterium saguini DSM 23967T (96.64 %). Strain LMC 13T was located in an actinobacterial cluster and was more closely related to the genus Bifidobacteriumthan to other genera in the Bifidobacteriaceae. On the basis of these results, strain LMC 13T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium lemurum sp. nov. is proposed; the type strain is LMC 13T ( = DSM 28807T = JCM 30168T).


Subject(s)
Bifidobacterium/classification , Lemur/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , DNA, Bacterial/genetics , Feces/microbiology , Genes, Bacterial , Molecular Sequence Data , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Anaerobe ; 33: 101-4, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25746741

ABSTRACT

Ninety-two bifidobacterial strains were obtained from the faeces of 5 baby common marmosets, three known species Bifidobacterium aesculapii, Bifidobacterium callithricos and Bifidobacterium reuteri and 4 novel putative bifidobacterial species were retrieved. The occurrence of bifidobacteria in non-human primate babies is described for the first time.


Subject(s)
Bifidobacterium/classification , Bifidobacterium/isolation & purification , Callithrix/microbiology , Animals , Bacterial Typing Techniques , Bifidobacterium/genetics , Cluster Analysis , DNA, Bacterial/genetics , Female , Male , Phylogeny
14.
Anaerobe ; 30: 169-77, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25312826

ABSTRACT

BACKGROUND: Bifidobacteria, one of the most common bacteria of the intestinal tract, help establish balance in the gut microbiota and confer health benefits to the host. One beneficial property is folate biosynthesis, which is dependent on species and strains. It is unclear whether the diversity in folate biosynthesis is due to the adaptation of the bifidobacteria to the host diet or whether it is related to the phylogeny of the animal host. To date, folate production has been studied in the bifidobacteria of omnivorous, and a few herbivorous, non-primate hosts and humans, but not in carnivores, non-human primates and insects. In our study we screened folate content and composition in bifidobacteria isolated from carnivores (dog and cheetah), Hominoidea omnivorous non-human primates (chimpanzee and orangutan) and nectarivorous insects (honey bee). RESULTS: Bifidobacterium pseudolongum subsp. globosum, a species typically found in non-primates, was isolated from dog and cheetah, and Bifidobacterium adolescentis and Bifidobacterium dentium, species typically found in humans, were respectively obtained from orangutan and chimpanzee. Evidence of folate biosynthesis was found in bifidobacteria isolated from non-human primates, but not from the bifidobacteria of carnivores and honey-bee. On comparing species from different hosts, such as poultry and herbivorous/omnivorous non-primates, it would appear that folate production is characteristic of primate (human and non-human) bifidobacteria but not of non-primate. Isolates from orangutan and chimpanzee had a high total folate content, the mean values being 7792 µg/100 g dry matter (DM) for chimpanzee and 8368 µg/100 g DM for orangutan. The tetrahydrofolate (H4folate) and 5-methyl-tetrahydrofolate (5-CH3-H4folate) distribution varied in the bifidobacteria of the different animal species, but remained similar in the strains of the same species: B. dentium CHZ9 contained the least 5-CH3-H4folate (3749 µ/100 g DM), while B. adolescentis ORG10 contained the most (8210 µg/100 g DM). CONCLUSION: Our data suggest a correlation between phylogenetic lineage and capacity of folate production by bifidobacteria, rather than with dietary type of the host.


Subject(s)
Bifidobacterium/chemistry , Diet , Folic Acid/analysis , Animals , Bifidobacterium/classification , Bifidobacterium/isolation & purification , Carnivora , Folic Acid/biosynthesis , Gastrointestinal Tract/microbiology , Insecta , Primates
15.
Br J Nutr ; 112(5): 794-811, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-24968103

ABSTRACT

Demand for organic foods is partially driven by consumers' perceptions that they are more nutritious. However, scientific opinion is divided on whether there are significant nutritional differences between organic and non-organic foods, and two recent reviews have concluded that there are no differences. In the present study, we carried out meta-analyses based on 343 peer-reviewed publications that indicate statistically significant and meaningful differences in composition between organic and non-organic crops/crop-based foods. Most importantly, the concentrations of a range of antioxidants such as polyphenolics were found to be substantially higher in organic crops/crop-based foods, with those of phenolic acids, flavanones, stilbenes, flavones, flavonols and anthocyanins being an estimated 19 (95 % CI 5, 33) %, 69 (95 % CI 13, 125) %, 28 (95 % CI 12, 44) %, 26 (95 % CI 3, 48) %, 50 (95 % CI 28, 72) % and 51 (95 % CI 17, 86) % higher, respectively. Many of these compounds have previously been linked to a reduced risk of chronic diseases, including CVD and neurodegenerative diseases and certain cancers, in dietary intervention and epidemiological studies. Additionally, the frequency of occurrence of pesticide residues was found to be four times higher in conventional crops, which also contained significantly higher concentrations of the toxic metal Cd. Significant differences were also detected for some other (e.g. minerals and vitamins) compounds. There is evidence that higher antioxidant concentrations and lower Cd concentrations are linked to specific agronomic practices (e.g. non-use of mineral N and P fertilisers, respectively) prescribed in organic farming systems. In conclusion, organic crops, on average, have higher concentrations of antioxidants, lower concentrations of Cd and a lower incidence of pesticide residues than the non-organic comparators across regions and production seasons.


Subject(s)
Antioxidants/analysis , Cadmium/analysis , Food, Organic/analysis , Pesticide Residues/analysis , Crops, Agricultural/chemistry , Flavonoids/analysis , Humans , Hydroxybenzoates/analysis , Nutritive Value , Organic Agriculture , Polyphenols/analysis
16.
Ann Microbiol ; 64: 611-617, 2014.
Article in English | MEDLINE | ID: mdl-24860281

ABSTRACT

Beneficial microbes, such as lactobacilli establish a symbiosis with the host and confer health-associated effects, by limiting the growth of indigenous pathogens and challenging microbes introduced by altered foods. Nevertheless, there is scarce information on the effects of beneficial microbes on the virulence properties of bacterial species associated with oral diseases, such as periodontitis. Aggregatibacter actinomycetemcomitans is a Gram-negative species highly implicated in the etiology of localized aggressive periodontitis. The objective of this study was to investigate the effect of lactobacilli on the expression of the two major virulence factors of A. actinomycetemcomitans. Lactobacillus salivarius and L. gasseri were selected as beneficial species. The gene expressions of leukotoxin (LtxA) and cytolethal distending toxin (CdtB) by A. actinomycetemcomitans were analyzed in response to challenge by lactobacilli cell-free supernatants. Neither lactobacilli affected the growth, but strongly attenuated the expressions of both CdtB and LtxA in the two A. actinomycetemcomitans strains tested. This reduction of the expression of these two exotoxins was time-dependent. These fundamental findings may indicate that lactobacilli can reduce the virulence of putative opportunistic oral pathogens, and may provide insights to future therapeutic approaches for the respective diseases.

17.
Appl Microbiol Biotechnol ; 98(13): 6051-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24687755

ABSTRACT

Several factors are known to influence the early colonization of the gut in newborns. Among them, the use of antibiotics on the mother during labor, referred to as intrapartum antibiotic prophylaxis (IAP), has scarcely been investigated, although this practice is routinely used in group B Streptococcus (GBS)-positive women. This work is therefore aimed at verifying whether IAP can influence the main microbial groups of the newborn gut microbiota at an early stage of microbial establishment. Fifty-two newborns were recruited: 26 born by mothers negative to GBS (control group) and 26 by mothers positive to GBS and subjected to IAP with ampicillin (IAP group). Selected microbial groups (Lactobacillus spp., Bidobacterium spp., Bacteroides fragilis, Clostridium difficile, and Escherichia coli) were quantified with real-time PCR on DNA extracted from newborn feces. Further analysis was performed within the Bidobacterium genus by using DGGE after amplification with genus-specific primers. Results obtained showed a significant decrease of the bifidobacteria counts after antibiotic treatment of the mother. Bifidobacteria were found to be affected by IAP not only quantitatively but also qualitatively. In fact, IAP determined a decrement in the frequency of Bidobacterium breve, Bidobacterium bifidum, and Bidobacterium dentium with respect to the control group. Moreover, this study has preliminarily evaluated that some bifidobacterial strains, previously selected for use in infants, have antibacterial properties against GBS and are therefore potential candidates for being applied as probiotics for the prevention of GBS infections.


Subject(s)
Antibiotic Prophylaxis/methods , Bifidobacterium/growth & development , Biota , Gastrointestinal Tract/microbiology , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/drug therapy , Streptococcal Infections/prevention & control , Antibiosis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Female , Humans , Infant, Newborn , Molecular Sequence Data , Polymerase Chain Reaction , Pregnancy , Sequence Analysis, DNA , Streptococcus agalactiae/growth & development
18.
Anaerobe ; 27: 34-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657392

ABSTRACT

Normalization is an essential prerequisite for producing accurate real-time PCR expression analyses. The objective of this study is the selection of a set of optimal reference genes in Bifidobacterium adolescentis gene expression studies under bile exposure. B adolescentis is a particularly abundant species in the human adults gut microbiota, exerting relevant probiotic activities. In the gastrointestinal tract, bile represents a hard challenge for bacterial survival, because of its toxic effect. The natural exposure to bile in the colonic environment induces cells adaptation and tolerance mechanisms in bifidobacteria, which determines changes in gene expression profile, influencing the expression levels of housekeeping genes. In this context, the stability of 9 putative reference genes (cysS, purB, recA, rpoB-L, GADPH-R, 16S rRNA, glnA1, gyrA2, sdhA) was examined in B. adolescentis exposed to bile extract, using two different software (BestKeeper and NormFinder). Both algorithms identified gyrA2 and sdhA as the most stable genes under our experimental conditions, while 16S rRNA is the least reliable HKGs. To our best knowledge, this is the first attempt to validate reference genes in Bifidobacterium spp. and the results offer an appropriate set of reference genes suitable for qRT-PCR studies on B. adolescentis strains under bile stress.


Subject(s)
Bifidobacterium/genetics , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Genes, Bacterial , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Adult , Bifidobacterium/drug effects , Bile/metabolism , Computational Biology , Humans , Software
19.
Anaerobe ; 26: 36-40, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24398432

ABSTRACT

A PCR-RFLP technique has been applied on 13 species of Bifidobacterium in order to update a previous study carried out by Baffoni et al. This method is based on the restriction endonuclease activity of HaeIII on the PCR-amplified hsp60 partial gene sequence, and allows a rapid and efficient identification of Bifidobacterium spp. strains at species and subspecies level.


Subject(s)
Bacterial Proteins/genetics , Bacteriological Techniques/methods , Bifidobacterium/genetics , Bifidobacterium/isolation & purification , Chaperonin 60/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Animals , Bifidobacterium/classification , Deoxyribonucleases, Type II Site-Specific , Humans
20.
Article in English | MEDLINE | ID: mdl-24427111

ABSTRACT

BACKGROUND: The human stomach, when healthy, is not a suitable host for microorganisms, but in pathological conditions such as gastritis, when gastric acid secretion is impaired, microbial overgrowth can be observed. Apart from Helicobacter pylori, the composition of microbiota, resident or exogenously introduced during neutral/high pH conditions, has not been investigated thoroughly. Thus, it is possible that Bifidobacteriaceae, important autochthonous and beneficial bacteria of human gastrointestinal microbiota, could over-colonize the stomach of hypochlorhydria patients suffering from autoimmune atrophic gastritis (AAG) or omeprazole-treated (OME) gastritis. This prompted us to characterize the Bifidobacteriaceae in such patients' gastric microbiota and to study its abnormal colonization. METHODS: Samples of gastric juices, and antrum and corpus mucosa from 23 hypochlorhydria patients (13 AAG and 10 OME) and from 10 control volunteers with base-line normochlorhydria, were cultivated in Brain Heart Infusion (BHI) and selective Bifidobacterium-Tryptone-Phytone-Yeast extract (Bif-TPY) media. The isolates were characterized by the fructose-6-phosphate phosphoketolase (F6PPK) test, electrophoresis of cellular proteins, the fermentation test, guanine-cytosine% DNA content, and DNA-DNA hybridization. Negative F6PPK isolates were characterized by order-specific polymerase chain reaction (PCR). RESULTS: A total of 125 isolates, assigned to the Bifidobacteriaceae family on the basis of their morphology, were obtained from AAG and OME patients, but not from normal subjects. Of these isolates, 55 were assigned to the Bifidobacteriaceae family on the basis of their fructose-6-phosphoketolase (PPK) activity, PPK being the key taxonomic enzyme of this family. The remaining 70 isolates, which were PPK-negative, were attributed to the Actinomycetales order following specific primer PCR analysis. We observed a significantly higher abundance of Bifidobacteriaceae (Bifidobacterium dentium, Scardovia inopinata, and Parascardovia denticolens) in OME group than the AAG group. Furthermore, the Actinomycetales distribution was homogeneous for both hypochlorhydria patient groups. CONCLUSIONS: This study suggests that the Bifidobacteriaceae species, typically found in the oral cavity, readily colonizes the hypochlorhydria stomach of OME patients. The clinical relevance and the mechanism underlying this Bifidobacteriaceae presence in OME gastritis requires further functional studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...