Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Development ; 151(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446206

ABSTRACT

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Subject(s)
Carrier Proteins , Heart Septal Defects, Ventricular , Lysine , Humans , Animals , Mice , Cell Lineage , Histones , Acetylation , Chromatin , Transcription Factors , Tumor Suppressor Proteins , Homeodomain Proteins/genetics , Cell Cycle Proteins , Histone Acetyltransferases
2.
Genomics ; 116(2): 110793, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220132

ABSTRACT

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Subject(s)
Leukocytes, Mononuclear , Single-Cell Analysis , Humans , Animals , Mice , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Algorithms , Gene Expression Profiling/methods
3.
Blood ; 139(15): 2355-2360, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35148538

ABSTRACT

Whether increasing platelet counts in fetal and neonatal alloimmune thrombocytopenia (FNAIT) is effective at preventing intracerebral hemorrhage (ICH) has been a subject of debate. The crux of the matter has been whether thrombocytopenia is the major driver of ICH in diseases such as FNAIT. We recently demonstrated in mice that severe thrombocytopenia was sufficient to drive ICH in utero and in early neonatal life. It remains unclear what degree of thrombocytopenia is required to drive ICH and for how long after birth thrombocytopenia can cause ICH. By inducing a thrombocytopenic range, we demonstrate that there is a large buffer zone of mild thrombocytopenia that does not result in ICH, that ICH becomes probabilistic at 40% of the normal platelet number, and that ICH becomes fully penetrant below 10% of the normal platelet number. We also demonstrate that although the neonatal mouse is susceptible to thrombocytopenia-induced ICH, this sensitivity is rapidly lost between postnatal days 7 and 14. These findings provide important insights into the risk of in utero ICH with varying degrees of thrombocytopenia and into defining the developmental high-risk period for thrombocytopenia-driven ICH in a mouse model of FNAIT.


Subject(s)
Antigens, Human Platelet , Thrombocytopenia, Neonatal Alloimmune , Animals , Cerebral Hemorrhage , Female , Fetus , Humans , Mice , Pregnancy , Prenatal Care
4.
Blood ; 138(10): 885-897, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34189583

ABSTRACT

Intracerebral hemorrhage (ICH) has a devastating impact on the neonatal population. Whether thrombocytopenia is sufficient to cause ICH in neonates is still being debated. In this study, we comprehensively investigated the consequences of severe thrombocytopenia on the integrity of the cerebral vasculature by using 2 orthogonal approaches: by studying embryogenesis in the Nfe2-/- mouse line and by using biologics (anti-GP1Bα antibodies) to induce severe thrombocytopenia at defined times during development. By using a mouse model, we acquired data demonstrating that platelets are required throughout fetal development and into neonatal life for maintaining the integrity of the cerebral vasculature to prevent hemorrhage and that the location of cerebral hemorrhage is dependent on when thrombocytopenia occurs during development. Importantly, this study demonstrates that fetal and neonatal thrombocytopenia-associated ICH occurs within regions of the brain which, in humans, could lead to neurologic damage.


Subject(s)
Cerebral Hemorrhage/metabolism , Fetus/metabolism , Thrombocytopenia/metabolism , Animals , Animals, Newborn , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Fetus/pathology , Mice , Mice, Knockout , Patient Acuity , Thrombocytopenia/genetics , Thrombocytopenia/pathology
5.
J Exp Med ; 217(9)2020 09 07.
Article in English | MEDLINE | ID: mdl-32706855

ABSTRACT

How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.


Subject(s)
Blood Platelets/cytology , Cell Membrane/metabolism , Animals , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Bone Marrow Cells/cytology , Cell Lineage , Cell Membrane/ultrastructure , Databases as Topic , Embryo, Mammalian/cytology , Fetus/cytology , Gene Expression Regulation , Imaging, Three-Dimensional , Integrases/metabolism , Liver/embryology , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice, Inbred C57BL , Ploidies , Reproducibility of Results , Skull/cytology
6.
Nature ; 577(7788): 103-108, 2020 01.
Article in English | MEDLINE | ID: mdl-31827281

ABSTRACT

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Subject(s)
Caspase 8/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 3/metabolism , Female , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pedigree , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
7.
Nucleic Acids Res ; 47(D1): D780-D785, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30395284

ABSTRACT

During haematopoiesis, haematopoietic stem cells differentiate into restricted potential progenitors before maturing into the many lineages required for oxygen transport, wound healing and immune response. We have updated Haemopedia, a database of gene-expression profiles from a broad spectrum of haematopoietic cells, to include RNA-seq gene-expression data from both mice and humans. The Haemopedia RNA-seq data set covers a wide range of lineages and progenitors, with 57 mouse blood cell types (flow sorted populations from healthy mice) and 12 human blood cell types. This data set has been made accessible for exploration and analysis, to researchers and clinicians with limited bioinformatics experience, on our online portal Haemosphere: https://www.haemosphere.org. Haemosphere also includes nine other publicly available high-quality data sets relevant to haematopoiesis. We have added the ability to compare gene expression across data sets and species by curating data sets with shared lineage designations or to view expression gene vs gene, with all plots available for download by the user.


Subject(s)
Databases, Genetic , Gene Expression/genetics , Hematopoiesis/genetics , Transcriptome/genetics , Animals , Computational Biology , Hematopoietic Stem Cells/metabolism , High-Throughput Nucleotide Sequencing/trends , Humans , Mice , RNA-Seq , Software
8.
PLoS Comput Biol ; 14(8): e1006361, 2018 08.
Article in English | MEDLINE | ID: mdl-30096152

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technology allows researchers to profile the transcriptomes of thousands of cells simultaneously. Protocols that incorporate both designed and random barcodes have greatly increased the throughput of scRNA-seq, but give rise to a more complex data structure. There is a need for new tools that can handle the various barcoding strategies used by different protocols and exploit this information for quality assessment at the sample-level and provide effective visualization of these results in preparation for higher-level analyses. To this end, we developed scPipe, an R/Bioconductor package that integrates barcode demultiplexing, read alignment, UMI-aware gene-level quantification and quality control of raw sequencing data generated by multiple protocols that include CEL-seq, MARS-seq, Chromium 10X, Drop-seq and Smart-seq. scPipe produces a count matrix that is essential for downstream analysis along with an HTML report that summarises data quality. These results can be used as input for downstream analyses including normalization, visualization and statistical testing. scPipe performs this processing in a few simple R commands, promoting reproducible analysis of single-cell data that is compatible with the emerging suite of open-source scRNA-seq analysis tools available in R/Bioconductor and beyond. The scPipe R package is available for download from https://www.bioconductor.org/packages/scPipe.


Subject(s)
Computational Biology/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Base Sequence , High-Throughput Nucleotide Sequencing , Humans , RNA/genetics , Software
9.
JCI Insight ; 2(6): e88271, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352650

ABSTRACT

Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease-generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5-driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5-dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients.


Subject(s)
Disease Models, Animal , Heart Defects, Congenital/genetics , Homeobox Protein Nkx-2.5/genetics , Point Mutation , Wnt Signaling Pathway/genetics , Animals , Gene Regulatory Networks , Heart/physiopathology , Heart Defects, Congenital/physiopathology , Homeobox Protein Nkx-2.5/metabolism , Humans , Mice , Mice, Transgenic , Phenotype
10.
Stem Cell Reports ; 7(3): 571-582, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27499199

ABSTRACT

Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.


Subject(s)
Blood Cells/cytology , Blood Cells/metabolism , Computational Biology , Gene Expression Regulation, Developmental , Hematopoiesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Humans , Mice , Web Browser
11.
Article in English | MEDLINE | ID: mdl-27195021

ABSTRACT

BACKGROUND: The presence of histone 3 lysine 9 (H3K9) methylation on the mouse inactive X chromosome has been controversial over the last 15 years, and the functional role of H3K9 methylation in X chromosome inactivation in any species has remained largely unexplored. RESULTS: Here we report the first genomic analysis of H3K9 di- and tri-methylation on the inactive X: we find they are enriched at the intergenic, gene poor regions of the inactive X, interspersed between H3K27 tri-methylation domains found in the gene dense regions. Although H3K9 methylation is predominantly non-genic, we find that depletion of H3K9 methylation via depletion of H3K9 methyltransferase Set domain bifurcated 1 (Setdb1) during the establishment of X inactivation, results in failure of silencing for around 150 genes on the inactive X. By contrast, we find a very minor role for Setdb1-mediated H3K9 methylation once X inactivation is fully established. In addition to failed gene silencing, we observed a specific failure to silence X-linked long-terminal repeat class repetitive elements. CONCLUSIONS: Here we have shown that H3K9 methylation clearly marks the murine inactive X chromosome. The role of this mark is most apparent during the establishment phase of gene silencing, with a more muted effect on maintenance of the silent state. Based on our data, we hypothesise that Setdb1-mediated H3K9 methylation plays a role in epigenetic silencing of the inactive X via silencing of the repeats, which itself facilitates gene silencing through alterations to the conformation of the whole inactive X chromosome.

12.
Differentiation ; 91(1-3): 29-41, 2016.
Article in English | MEDLINE | ID: mdl-26897459

ABSTRACT

Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies.


Subject(s)
ERG1 Potassium Channel/genetics , Heart Defects, Congenital/genetics , Heart/growth & development , Homeobox Protein Nkx-2.5/genetics , Animals , Disease Models, Animal , ERG1 Potassium Channel/metabolism , Gene Expression Regulation, Developmental , Heart/embryology , Heart/physiopathology , Heart Defects, Congenital/physiopathology , Humans , Ion Channels/genetics , Ion Channels/metabolism , Mice , Mice, Knockout , Mutation
13.
Blood ; 124(17): 2725-9, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25079356

ABSTRACT

In this study, we test the assumption that the hematopoietic progenitor/colony-forming cells of the embryonic yolk sac (YS), which are endowed with megakaryocytic potential, differentiate into the first platelet-forming cells in vivo. We demonstrate that from embryonic day (E) 8.5 all megakaryocyte (MK) colony-forming cells belong to the conventional hematopoietic progenitor cell (HPC) compartment. Although these cells are indeed capable of generating polyploid MKs, they are not the source of the first platelet-forming cells. We show that proplatelet formation first occurs in a unique and previously unrecognized lineage of diploid platelet-forming cells, which develop within the YS in parallel to HPCs but can be specified in the E8.5 Runx1-null embryo despite the absence of the progenitor cell lineage.


Subject(s)
Cell Lineage/genetics , Diploidy , Embryo, Mammalian/metabolism , Megakaryocyte Progenitor Cells/metabolism , Megakaryocytes/metabolism , Polyploidy , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Gene Expression Regulation, Developmental , Megakaryocyte Progenitor Cells/cytology , Megakaryocytes/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Time Factors , Transcriptome , Yolk Sac/cytology , Yolk Sac/embryology , Yolk Sac/metabolism
14.
Cell Stem Cell ; 9(6): 527-40, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22136928

ABSTRACT

Colony-forming units - fibroblast (CFU-Fs), analogous to those giving rise to bone marrow (BM) mesenchymal stem cells (MSCs), are present in many organs, although the relationship between BM and organ-specific CFU-Fs in homeostasis and tissue repair is unknown. Here we describe a population of adult cardiac-resident CFU-Fs (cCFU-Fs) that occupy a perivascular, adventitial niche and show broad trans-germ layer potency in vitro and in vivo. CRE lineage tracing and embryo analysis demonstrated a proepicardial origin for cCFU-Fs. Furthermore, in BM transplantation chimeras, we found no interchange between BM and cCFU-Fs after aging, myocardial infarction, or BM stem cell mobilization. BM and cardiac and aortic CFU-Fs had distinct CRE lineage signatures, indicating that they arise from different progenitor beds during development. These diverse origins for CFU-Fs suggest an underlying basis for differentiation biases seen in different CFU-F populations, and could also influence their capacity for participating in tissue repair.


Subject(s)
Bone Marrow Cells/physiology , Mesenchymal Stem Cells/physiology , Myocytes, Cardiac/physiology , Pericardium/cytology , Animals , Biomarkers/metabolism , Bone Marrow Cells/cytology , Cell Differentiation/physiology , Cell Lineage , Cells, Cultured , Colony-Forming Units Assay , Fibroblasts/cytology , Fibroblasts/physiology , Heart/embryology , Heart/growth & development , Mesenchymal Stem Cells/cytology , Mice , Myocytes, Cardiac/cytology , Transplantation Chimera
15.
Nat Methods ; 8(12): 1037-40, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22020065

ABSTRACT

NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5(eGFP/w) hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP(+) cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.


Subject(s)
Cell Separation/methods , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Myoblasts, Cardiac/cytology , Myocytes, Cardiac/cytology , Transcription Factors/metabolism , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Biomarkers/analysis , Cell Differentiation , Gene Expression Profiling , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Humans , Myoblasts, Cardiac/metabolism , Myocytes, Cardiac/metabolism , Polymerase Chain Reaction , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Transcription Factors/genetics , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
16.
Dev Dyn ; 240(1): 195-203, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21089073

ABSTRACT

To aid in detection and tracking of cells targeted by the left-right (LR) pathway in the heart throughout morphogenesis, expression from a Pitx2c-lacZ transgene (P2Ztg) was analysed in detail. ß-galactosidase expression from P2Ztg was robust, allowing reliable visualisation of low-level Pitx2c expression, and was virtually entirely dependent upon NODAL signalling in the heart. P2Ztg showed expression in trabecular and septal, as well as non-trabecular, myocardium, and a strong expression bias in myocardium associated with individual endocardial cushions of the atrioventricular canal and outflow tract, which are essential for cardiac septation. Expression on the ventral surface of the outflow tract evolved to a specific stripe that could be used to track the future aorta during outflow tract spiralling and remodelling. Our data show that the P2Ztg transgene is a useful resource for detection of molecular disturbances in the LR cascade, as well as morphogenetic defects associated with other cardiac congenital disorders.


Subject(s)
Genes, Reporter , Homeodomain Proteins/genetics , Myocardium/metabolism , Transcription Factors/genetics , Transgenes , Animals , Gene Expression Regulation, Developmental , Genes, Reporter/physiology , Heart/embryology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Homeodomain Proteins/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Morphogenesis/genetics , Neural Crest/metabolism , Reproducibility of Results , Transcription Factors/metabolism , Transgenes/genetics , Transgenes/physiology , Homeobox Protein PITX2
17.
Genes Dev ; 22(21): 3037-49, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18981480

ABSTRACT

Bistability in developmental pathways refers to the generation of binary outputs from graded or noisy inputs. Signaling thresholds are critical for bistability. Specification of the left/right (LR) axis in vertebrate embryos involves bistable expression of transforming growth factor beta (TGFbeta) member NODAL in the left lateral plate mesoderm (LPM) controlled by feed-forward and feedback loops. Here we provide evidence that bone morphogenetic protein (BMP)/SMAD1 signaling sets a repressive threshold in the LPM essential for the integrity of LR signaling. Conditional deletion of Smad1 in the LPM led to precocious and bilateral pathway activation. NODAL expression from both the left and right sides of the node contributed to bilateral activation, indicating sensitivity of mutant LPM to noisy input from the LR system. In vitro, BMP signaling inhibited NODAL pathway activation and formation of its downstream SMAD2/4-FOXH1 transcriptional complex. Activity was restored by overexpression of SMAD4 and in embryos, elevated SMAD4 in the right LPM robustly activated LR gene expression, an effect reversed by superactivated BMP signaling. We conclude that BMP/SMAD1 signaling sets a bilateral, repressive threshold for NODAL-dependent Nodal activation in LPM, limiting availability of SMAD4. This repressive threshold is essential for bistable output of the LR system.


Subject(s)
Body Patterning , Bone Morphogenetic Proteins/metabolism , Mesoderm/physiology , Smad1 Protein/metabolism , Smad4 Protein/metabolism , Animals , Cell Line , Forkhead Transcription Factors/metabolism , Humans , Mesoderm/embryology , Mice , Mutation , Nodal Protein/metabolism , Signal Transduction , Smad1 Protein/genetics , Smad4 Protein/genetics
18.
Proc Natl Acad Sci U S A ; 104(37): 14759-64, 2007 Sep 11.
Article in English | MEDLINE | ID: mdl-17804806

ABSTRACT

Chemotactic cytokines (chemokines) attract immune cells, although their original evolutionary role may relate more closely with embryonic development. We noted differential expression of the chemokine receptor CXCR7 (RDC-1) on marginal zone B cells, a cell type associated with autoimmune diseases. We generated Cxcr7(-/-) mice but found that CXCR7 deficiency had little effect on B cell composition. However, most Cxcr7(-/-) mice died at birth with ventricular septal defects and semilunar heart valve malformation. Conditional deletion of Cxcr7 in endothelium, using Tie2-Cre transgenic mice, recapitulated this phenotype. Gene profiling of Cxcr7(-/-) heart valve leaflets revealed a defect in the expression of factors essential for valve formation, vessel protection, or endothelial cell growth and survival. We confirmed that the principal chemokine ligand for CXCR7 was CXCL12/SDF-1, which also binds CXCR4. CXCL12 did not induce signaling through CXCR7; however, CXCR7 formed functional heterodimers with CXCR4 and enhanced CXCL12-induced signaling. Our results reveal a specialized role for CXCR7 in endothelial biology and valve development and highlight the distinct developmental role of evolutionary conserved chemokine receptors such as CXCR7 and CXCR4.


Subject(s)
Chemokines, CXC/metabolism , Heart/embryology , Hematopoiesis , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/metabolism , Animals , Chemokine CXCL12 , Chemokines, CXC/genetics , Fluorescence Recovery After Photobleaching , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heart Valves/embryology , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Morphogenesis , Protein Binding , Receptors, CXCR , Receptors, G-Protein-Coupled/genetics
19.
Cell ; 128(5): 947-59, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17350578

ABSTRACT

During heart development the second heart field (SHF) provides progenitor cells for most cardiomyocytes and expresses the homeodomain factor Nkx2-5. We now show that feedback repression of Bmp2/Smad1 signaling by Nkx2-5 critically regulates SHF proliferation and outflow tract (OFT) morphology. In the cardiac fields of Nkx2-5 mutants, genes controlling cardiac specification (including Bmp2) and maintenance of the progenitor state were upregulated, leading initially to progenitor overspecification, but subsequently to failed SHF proliferation and OFT truncation. In Smad1 mutants, SHF proliferation and deployment to the OFT were increased, while Smad1 deletion in Nkx2-5 mutants rescued SHF proliferation and OFT development. In Nkx2-5 hypomorphic mice, which recapitulate human congenital heart disease (CHD), OFT anomalies were also rescued by Smad1 deletion. Our findings demonstrate that Nkx2-5 orchestrates the transition between periods of cardiac induction, progenitor proliferation, and OFT morphogenesis via a Smad1-dependent negative feedback loop, which may be a frequent molecular target in CHD.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Feedback, Physiological , Homeodomain Proteins/metabolism , Multipotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Smad1 Protein/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Protein 2 , Cell Proliferation , DNA, Complementary , Embryo, Mammalian , Heart/embryology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Humans , LIM-Homeodomain Proteins , Mice , Multipotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Transcription Factors/genetics
20.
Development ; 133(7): 1311-22, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16510504

ABSTRACT

Homeodomain factor Nkx2-5 is a central component of the transcription factor network that guides cardiac development; in humans, mutations in NKX2.5 lead to congenital heart disease (CHD). We have genetically defined a novel conserved tyrosine-rich domain (YRD) within Nkx2-5 that has co-evolved with its homeodomain. Mutation of the YRD did not affect DNA binding and only slightly diminished transcriptional activity of Nkx2-5 in a context-specific manner in vitro. However, the YRD was absolutely essential for the function of Nkx2-5 in cardiogenesis during ES cell differentiation and in the developing embryo. Furthermore, heterozygous mutation of all nine tyrosines to alanine created an allele with a strong dominant-negative-like activity in vivo: ES cell<-->embryo chimaeras bearing the heterozygous mutation died before term with cardiac malformations similar to the more severe anomalies seen in NKX2.5 mutant families. These studies suggest a functional interdependence between the NK2 class homeodomain and YRD in cardiac development and evolution, and establish a new model for analysis of Nkx2-5 function in CHD.


Subject(s)
Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Myocardium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Tyrosine/chemistry , Amino Acid Sequence , Animals , Animals, Newborn , Blotting, Western , Cell Line , Cells, Cultured , Cephalopoda , Conserved Sequence , Electrophoretic Mobility Shift Assay , Embryo, Mammalian , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Gene Targeting , Genes, Reporter , Glutathione Transferase/metabolism , Green Fluorescent Proteins/metabolism , Heterozygote , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/chemistry , In Situ Hybridization , Luciferases/metabolism , Mice , Molecular Sequence Data , Mutation , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phylogeny , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...