Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Heliyon ; 10(10): e30927, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38779003

ABSTRACT

The purpose of this study was to synthesize ecofriendly nano-composite in which agricultural waste (seeds of Tamarindus indica) was used to synthesize tamarind seed polysaccharides (TSP) and its composite with copper nanoparticles (Cu-NPs) for the purpose of green and clean environment as well as reduction of green-house gases. Confirmation of extracted TSP, synthesized nanocomposite was carried out using FTIR, SEM, PXRD and EDX techniques. In FTIR analysis TSP gives a strong broad peak at 3331 cm-1 due to -OH group and in case of composite its intensity is reduced which might be due to the interactions between -OH and Cu+2 ions. SEM analysis gives that TSP have irregular and rough surface while Cu-NPs exhibited spherical morphology and composite showed clustering of spherical shape to rough surface. EDX analysis quantitatively represented copper having atomic ratio 0.57 % which confirms the synthesis of composite. Furthermore, synthesized composite demonstrated excellent antibacterial activity against gram-positive (S.aureus) and gram-negative bacteria (E.coli) even greater than standard medicine (ciprofloxacin). From this study it was revealed that agriculture waste can be utilized to make environment green as well as synthesized composite from agricultural waste seed also displayed excellent antimicrobial activities which directs that they can be utilized in medical field. This study aims to assess the antimicrobial properties of the nanocomposite, aiming to contribute to the development of effective antimicrobial agents. Through these objectives, the research seeks to bridge the gap between green technology and antimicrobial efficacy, offering a promising avenue for both environmental conservation and healthcare advancements.

3.
ACS Omega ; 9(15): 17137-17142, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645367

ABSTRACT

In certain low-income nations, the hepatitis Delta virus and hepatitis B virus (HBV) pose a serious medical burden, where the prevalence of hepatitis B surface antigen (HBsAg) is greater than 8%. Especially in rural places, irregular diagnostic exams are the main restriction and reason for underestimation. Utilizing serum samples from a Pakistani isolate, an internal ELISA for the quick identification of anti-HDV was created, and the effectiveness of the test was compared to a commercial diagnostic kit. HDV-positive serum samples were collected, and a highly antigenic domain of HDAg antigen was derived from them. This antigenic HDAg was expressed in a bacterial expression system, purified by Ni-chromatography, and confirmed by SDS-PAGE and Western blot analysis. The purified antigen was utilized to develop an in-house ELISA assay for anti-HDV antibody detection of the patient's serum samples at very low cost. Purified antigens and positive and negative controls can detect anti-HDV (antibodies) in ELISA plates. The in-house developed kit's efficiency was compared with that of a commercial kit (Witech Inc., USA) by the mean optical density values of both kits. No significant difference was observed (a P value of 0.576) by applying statistical analysis. The newly developed in-house ELISA is equally efficient compared to commercial kits, and these may be useful in regular diagnostic laboratories, especially for analyzing local isolates.

4.
Front Plant Sci ; 15: 1340641, 2024.
Article in English | MEDLINE | ID: mdl-38495367

ABSTRACT

The cultivation of summer vegetables in open-air nutrient film technique (NFT) hydroponics is limited due to the elevated nutrient solution temperature (NST). In this regard, non-electric evaporative-cooling techniques were explored to maintain NST in open-air NFT hydroponics. Four cooling setups were employed by wrapping polyvinyl chloride (PVC) grow pipes with one and two layers of either wet or dry jute fabrics and attaching them with coiled aluminum pipe buried inside a) wet sand-filled brick tunnels (Cooling Setup I), b) two inverted and vertically stacked earthen pots (Cooling Setup II), c) two inverted and vertically stacked earthen pots externally wrapped with wet jute fabric (Wrapped Cooling Setup II), and d) an earthen pitcher wrapped with wet jute fabric (Cooling Setup III). Wrapping grow pipes with two layers of wet jute fabric reduced NST by 5°C as compared to exposed (naked) grow pipes. The double-layer jute fabric-wrapped grow pipes produced 182% more reduction in NST in comparison to single layer-wrapped grow pipes. Additionally, the installation of Wrapped Cooling Setup II and Cooling Setup III outperformed Cooling Setup I and Cooling Setup II through NST reduction of approximately 4°C in comparison to control. Interestingly, Cooling Setup III showed its effectiveness through NST reductions of 193%, 88%, and 23% during 11 a.m.-12 p.m. as compared to Cooling Setup I, Cooling Setup II, and Wrapped Cooling Setup II, respectively. In contrast, Wrapped Cooling Setup II caused NST reductions of 168%, 191%, and 18% during 2-3 p.m. in comparison to Cooling Setup I, Cooling Setup II, and Cooling Setup III, respectively. Thus, the double-layer jute fabric-wrapped grow pipes linked with Wrapped Cooling Setup II can ensure summer vegetable cultivation in open-air NFT hydroponics as indicated by the survival of five out of 12 vegetable plants till harvest by maintaining NST between 26°C and 28°C.

5.
Heliyon ; 10(2): e24581, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298711

ABSTRACT

Hepatitis C virus (HCV) infection remains one of the leading causes of liver complications globally. Ubiquitin Specific Peptidase-18 (USP18) is a ubiquitin-specific protease that cleaves interferon-stimulated gene 15 (ISG15) from ISGylated protein complexes and is involved in regulating interferon responsiveness. To study the effect of direct-acting antivirals (DAAs) on the USP18 gene using qPCR, 132 participants were recruited and classified into different groups based on treatment duration. USP18 expression was raised compared to rapid virologic response (RVR) and early virologic response (EVR) groups with P = 0.0026 and P = 0.0016, respectively. USP18 was found to be 7.36 folds higher in naïve patients than those with RVR and sustained viral response (SVR). In RVR and SVR groups where patients had cleared HCV RNA after treatment with direct-acting antiviral agents (DAA) therapy, the expression of USP18 was found to be low, with a fold change of 1.3 and 1.4 folds, respectively. Expression of USP18 was significantly higher in the non-RVR group than in the RVR group. In the No EVR group, gene expression was significantly higher than in the EVR group. It is concluded that targeting HCV proteins using DAAs can cause USP18 expression to be normalized more effectively. Moreover, USP18 is a vital marker indicating treatment resistance and distinguishing responders from non-responders during DAA therapy.

6.
ACS Omega ; 8(45): 42987-42999, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024752

ABSTRACT

Hepatitis C virus (HCV) causes various liver complications, including fibrosis, cirrhosis, and steatosis, and finally progresses toward hepatocellular carcinoma (HCC). The current study aimed to explore the antiviral activity of the traditional Pakistani medicinal plant Salix nigra (S. nigra) known as black willow against the hepatitis C virus (HCV). The anti-HCV activity of S. nigra was established against stable Hep G2 cell lines expressing the HCV NS3 gene. Various plant-derived compounds with anti-HCV activity were identified, making phytotherapy a promising alternative to conventional treatments due to their cost-effectiveness and milder side effects. The two extraction methods (Maceration and Soxhlet) and four solvents (n-hexane, methanol, ethyl acetate, and water) were used to obtain crude extracts from S. nigra. Cytotoxicity testing showed that methanol (CC50 25 µg/mL) and water (CC50 30 µg/mL) extracts were highly toxic, while ethyl acetate and n-hexane (CC50 > 200 µg/mL) extracts were nontoxic at low concentrations (10-50 µg/mL), making them suitable for further anti-HCV investigations. Stable transfection of the NS3 gene was successfully performed in Hep G2 cells, creating a cellular expression system for studying virus-host interaction. The ethyl acetate extract of S. nigra exhibited significant inhibition of NS3 gene expression (mRNA and protein levels). The phytochemical analysis of S. nigra was also performed using the high-performance liquid chromatography (HPLC) technique. The phytochemical analysis identified several polyphenolic substances in the extracts of S. nigra. Our results concluded that the extracts of S. nigra have significantly reduced the expression of the NS3 gene at mRNA and protein levels. These findings contribute to the global efforts to combat hepatitis C by offering plant-based treatment options for HCV management.

7.
ACS Omega ; 8(28): 25370-25377, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483213

ABSTRACT

Hepatitis C virus (HCV) is one of the most prevalent pathogens which causes significant morbidity and mortality in 2% of the world's population. Several interferon-stimulated genes (ISGs) are involved in HCV clearance by interacting with the viral proteins. Among these ISGs, the tripartite motif (TRIM) family genes are elevated during HCV infection. This study aims to evaluate the expression of three TRIM family genes in chronic hepatitis C patients, distributed among different groups, including TRIM11, TRIM14, and TRIM25. A total of 242 participants were recruited in this study, including 182 infected patients, 37 naïve individuals, and 23 control individuals. Out of 182 infected patients, 100 achieved sustained virologic response (SVR), 61 achieved rapid virologic response (RVR), and 21 patients developed hepatocellular carcinoma (HCC), showing no response to the given treatments. Our results indicate highest expression levels of TRIM mRNA transcripts in the RVR group with the highest increase of 7.5 folds in TRIM25, 6.68 folds in TRIM14, followed by the data from patients of the SVR group. The elevation was also evident in other groups, i.e., SVR and HCC, in different patterns among all the three TRIM genes. In addition to elevation in expression levels, a linear correlation is observed between the TRIM mRNAs and viral loads of HCV. These results showed the potential role of TRIM family genes in HCV restriction.

8.
J Infect Public Health ; 16(9): 1396-1402, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480670

ABSTRACT

BACKGROUND: MMTV causes mammary tumors in mice, and it is associated with invasive and aggressive forms of breast cancer in humans. However, the underlying mechanisms are yet unknown. We aimed to determine the MMTV-like virus (MMTV-LV) association with histological types of breast cancer, nodal involvement, and metastasis. METHODS: First, 105 breast cancer biopsies and 15 disease-free biopsies were collected. Details of clinicopathological characteristics were retrieved from patients' records. The status of MMTV-LV was already known for these biopsy samples. Associations of MMTV-LV prevalence with LNM status and metastatic history were determined. Next, quantitative PCR (qPCR) was used to quantify env gene mRNA in biopsies positive for MMTV-LV. Expression of the env gene was compared against different histopathological types of mammary tumor, LNM status, and metastasis by performing Ordinary One Way ANOVA followed by Tukey's multiple comparisons test. RESULTS: MMTV-LV prevalence was found to have no significant association with LNM or metastatic history. As compared to normal control, expression of the env gene was significantly higher (>2.8 folds) in invasive samples (P-value: < 0.01). Expression was also higher (3.28 and 2.89 folds) in patient samples with LNM (P-value: 0.0006) or metastatic history (P-value: < 0.0001), respectively. CONCLUSION: We conclude that MMTV-LV prevalence is not associated with LNM status or breast cancer metastasis; samples with invasive phenotypes, nodal involvement, and metastasis exhibit significantly higher expression of the MMTV-like env gene.


Subject(s)
Breast Neoplasms , Mammary Tumor Virus, Mouse , Neoplasm Metastasis , Mammary Tumor Virus, Mouse/genetics , Breast Neoplasms/virology , Neoplasm Metastasis/pathology , Female , Animals , Mice , Prevalence , Polymerase Chain Reaction , Genes, env/genetics
9.
ACS Omega ; 8(16): 14784-14791, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125127

ABSTRACT

Hepatitis C virus (HCV) is a major public health problem that affects more than 170 million people globally. HCV is a principal cause of hepatocellular carcinoma (HCC) around the globe due to the high frequency of hepatitis C infection, and the high rate of HCC is seen in patients with HCV cirrhosis. TP53 is considered as a frequently altered gene in all cancer types, and it carries an interferon response element in its promoter region. In addition to that, the TP53 gene also interacts with different HCV proteins. HCV proteins especially NS3 protein and core protein induce the mutations in the TP53 gene that lower the expression of this gene in HCV patients and leads to HCC development. In this study, we examined the transcriptional analysis of the TP53 gene in HCV-infected patients administered with different combinations of antiviral therapies including sofosbuvir + daclatasvir, sofosbuvir + ribavirin, and pegylated interferon + ribavirin. This study included 107 subjects; 15 treated with sofosbuvir + daclatasvir, 58 treated with sofosbuvir + ribavirin, 11 treated with interferon + ribavirin, 8 untreated, 10 HCC patients, and 5 were healthy controls. Total RNA was extracted from the PMBCs of HCV infected patients and reverse transcribed into cDNA using a gene specific reverse primer. The expression level of TP53 mRNA was analyzed using quantitative PCR. The expression of TP53 mRNA was notably upregulated in rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR) groups as compared to non-responders and naïve groups. The expression of TP53 mRNA was seen high in HCC as compared to control groups. Additionally, it has been demonstrated that sofosbuvir + daclatasvir treatment stimulates significant elevation in TP53 gene expression as compared to (sofosbuvir + ribavirin) and (IFN + ribavirin) treatment. This study indicates that the TP53 gene expression is highly upregulated in RVR, EVR, and SVR groups as compared to control groups. Moreover, sofosbuvir + daclatasvir therapy induces significant rise in TP53 mRNA expression levels as compared to (sofosbuvir + ribavirin) and (IFN + ribavirin) treatment. According to these results, it can be concluded that sofosbuvir + daclatasvir plays a significant role in preventing HCV patients from developing severe liver complications as compared to other administered therapies. This study is novel as no such type of study has been conducted previously on the expression of TP53 in local HCV-infected population treated with different combinations of therapies. This study is helpful for the development of new therapeutic strategies and for improving existing therapies.

10.
Environ Sci Pollut Res Int ; 29(35): 52618-52634, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35262893

ABSTRACT

As a result of extreme modifications in human activity during the COVID-19 pandemic, the status of air quality has recently been improved. This bibliometric study was conducted on a global scale to quantify the impact of the COVID-19 pandemic on air pollution, identify the emerging challenges, and discuss the future perspectives during the course of the ongoing COVID-19 pandemic. For this, we have estimated the scientific production trends between 2020 and 2021 and investigated the contributions of countries, institutions, authors, and most prominent journals metrics network analysis on the topic of COVID-19 combined with air pollution research spanning the period between January 01, 2020, and June 21, 2021. The search strategy retrieved a wide range of 2003 studies published in scientific journals from the Web of Sciences Core Collection (WoSCC). The findings indicated that (1) publications on COVID-19 pandemic and air pollution were 990 (research articles) in 2021 with 1870 citations; however, the year 2020 witnessed only 830 research articles with a large number 16,600 of citations. (2) China ranked first in the number of publications (n = 365; 18.22% of the global output) and was the main country in international cooperation network, followed by the USA (n = 278; 13.87% of the global output) and India (n = 216; 10.78 of the total articles). (3) By exploring the co-occurrence and links strengths of keywords "COVID-19" (1075; 1092), "air pollution" (286; 771), "SARS-COV-2" (252; 1986). (4) The lessons deduced from the COVID-19 pandemic provide defined measures to reduce air pollution globally. The outcomes of the present study also provide useful guidelines for future research programs and constitute a baseline for researchers in the domain of environmental and health sciences to estimate the potential impact of the COVID-19 pandemic on air pollution.


Subject(s)
Air Pollution , COVID-19 , Bibliometrics , COVID-19/epidemiology , Pandemics , Publications
11.
Environ Geochem Health ; 44(11): 4191-4200, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35067762

ABSTRACT

The consortium of minerals and organic matter notably alters and affects minerals' surface characteristics and nutrients providence. Organic matter such as biochar can modify the availability status of macronutrients like phosphorus (P). Despite some investigation, the adsorption/desorption of P with pure iron (hydr)oxides and the probable mechanisms involved are still unknown. In the present study, the goethite/hematite or goethite-biochar/hematite-biochar complexes were prepared, and a batch experiment with different P concentrations, time spell, pH, and ionic strength is performed to evaluate the sorption characteristics of P. The results of our study suggest that the P adsorption on mineral surface decreased with the increasing pH. Furthermore, the coexistence of biochar and minerals significantly inhibits P adsorption on the minerals surface. The results of Languimner and Freundlich's equations signify that the biochar-minerals complexes have heterogeneous adsorption sites and the presence of biochar reduces P adsorption on minerals surface. Among four biochars including peanut straw biochar (PC (B1)), rice straw biochar (RC (B2)), canola straw biochar (CC (B3)), and soybean straw biochar (SC (B4)), PC was more effective than other biochars to inhibit P adsorption on minerals surfaces.


Subject(s)
Phosphates , Soil , Soil/chemistry , Charcoal/chemistry , Minerals/chemistry , Adsorption , Phosphorus , Iron , Oxides
12.
Int J Phytoremediation ; 24(11): 1193-1204, 2022.
Article in English | MEDLINE | ID: mdl-34995161

ABSTRACT

We conducted a pot experiment to evaluate the potential for soil- and foliar-applied silicon (Si), alone and in combination, to a Cd-contaminated soil in order to evaluate the effects on such amendments on the Cd translocation from soil to wheat root, shoot and grains. Five treatments were used, T1) control with no external factor added, T2 received only Cd, while T3-T5 treatments received Cd in combination with soil, foliar and soil plus foliar applied Si. Except control (T1), soil was contaminated with Cd at 10 mg kg-1 in all the treatments and 1% solution of Si as an amendment was used for soil and/or foliar application or their combination. Overall, while Si application improved both plant growth and yield in Cd-contaminated soil. Control and combined soil- and foliar-applied Si in Cd contaminated treatments showed equally positive (2.5%) increase in plant height over Cd contaminated treatment. Grain yield was also highest in the treatment receiving Cd plus soil-applied Si (29%) followed by control (26%). It was concluded that Si can alleviate Cd toxicity in wheat irrespective of whether the Si was soil-applied or applied via a foliar method, but soil applied Si proved the best in this regard.Novelty statement Immobilization of metals i.e., cadmium (Cd) with soil-applied amendments like biomaterials and organic manure to decrease Cd concentration in plants have already been widely investigated. Silicon (Si) is a cheap in-organic and readily available element in the nature and also used for the same purpose. It can be applied both in soil as well as by foliar and soil + foliar application to decrease the metals concentration in soil and plants. However, comparative effectiveness of these three methods have not been checked simultaneously. In this study, we have studied the comparative effectiveness of Si application to soil, foliar and their combination (soil + foliar) to decrease Cd concentration during wheat crop.


Subject(s)
Oryza , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Silicon , Soil , Soil Pollutants/analysis , Triticum
13.
Sci Total Environ ; 812: 151469, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34742960

ABSTRACT

In different regions of the world, arsenic (As) contaminated soils poses a serious threat to plant growth and its physiological processes. Organic amendments are a cost-effective and environmentally friendly way to improve plant growth under stress conditions in contaminated soils. In As polluted acidic ultisol, a greenhouse trial was conducted to investigate the protective effects of peanut straw biochar (PSB) and canola straw biochar (CSB) on soybean mineral nutrition, antioxidant enzymes, and physiological growth parameters. The current study used eighteen treatments with different levels of As ((1) 0 mg kg-1, (2) 30 mg kg-1, (3) 60 mg kg-1) and biochar (PSB and CSB) (0%, 1%, and 2%). The result suggests that biochar addition under As stress in highly weathered acidic ultisol soil increased soybean growth attributes and defense mechanisms. The PSB was more effective than the CSB in a dose-dependent manner. The application of 2% PSB in polluted soil resulted in significant increases in soybean height (58%), biomass production (root (44%) and shoot length (52%)), chlorophyll contents (92%), soybean functional leaves (62%), total soluble sugars (TSS) (71%) and base cations (Ca2+, Mg2+, K+, Na+). However, biochar application decreased proline, MDA, H2O2, and O2- by 64%, 82%, 49%, and 45% respectively. Furthermore, biochar application increased (Phosphate) P and As uptake in soybean, with PSB application exhibiting a greater increase than CSB application. As a result, crop straw-derived biochar can reduce As-induced soybean plant damage and insert a protective effect in As-contaminated acidic ultisol soils.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/toxicity , Charcoal , Hydrogen Peroxide , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
14.
PLoS Negl Trop Dis ; 15(7): e0008824, 2021 07.
Article in English | MEDLINE | ID: mdl-34319976

ABSTRACT

Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.


Subject(s)
Disease Eradication , Onchocerciasis/epidemiology , Africa/epidemiology , Environment , Forecasting , Humans , Ivermectin/administration & dosage , Mass Drug Administration , Onchocerciasis/drug therapy , Onchocerciasis/transmission , ROC Curve
15.
J Ayub Med Coll Abbottabad ; 33(Suppl 1)(4): S717-S720, 2021.
Article in English | MEDLINE | ID: mdl-35077615

ABSTRACT

BACKGROUND: The pandemic of COVID 19 has affected a number of people around the globe. The data from paediatric population is scarce. The present study is aimed to present the paediatric perspective of the disease in terms of different clinical presentations, laboratory parameters, complications, and outcomes so as to develop an insight into disease manifestations in children. METHODS: This descriptive case series was conducted in the department of Paediatrics after approval of institutional review board. All children admitted in paediatric unit with confirmed SARS-COV-2 infection either by PCR or antibody test were included in the study. Patients' characteristics were documented on a predesigned proforma and analysed using SPSS 26.0. RESULTS: A total of 17 patients comprising 13 (76.5%) male and 4(23.5%) female were included in the study. The major clinical features were fever, cough and shortness of breath documented in 15 (88.2 %) patients. Major complications were shock in 13 (76.5%), respiratory complications in 16 (94.11%), CNS complications in 4 (23.5%), cardiac complications in 5 (29.4%), hepatic involvement in 3 (17.6%) Acute Kidney Injury in 4 (23.5%) patients and 9 (52.9 %) patients were labelled as having Multisystem Inflammatory Syndrome in Children (MIS-C). A total of 7 (41.2%) patients had coexistent comorbid diseases. A total of 13 (76.47%) patients were discharged, 2 (11.8%) patients expired and 2 (11.8%) left against medical advice. CONCLUSION: The clinical presentation of paediatric patients with SARS-COV-2 infection is highly variable. Multisystem inflammatory syndrome associated with SARS-COV-2 must be considered in the differential diagnosis of children presenting with multiorgan dysfunction.


Subject(s)
COVID-19 , Pediatrics , COVID-19/complications , Child , Female , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Tertiary Healthcare
16.
Chemosphere ; 194: 171-188, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29202269

ABSTRACT

Growing rice on arsenic (As)-contaminated soil or irrigating with As-contaminated water leads to significant accumulation of As in grains. Moreover, rice accumulates more As into grains than other cereal crops. Thus, rice consumption has been identified as a major route of human exposure to As in many countries. Inorganic As species are carcinogenic and could pose a considerable health risk to humans even at low dietary concentration. Genotypic variation and concentration of nutrients such as iron, manganese, phosphate, sulfur and silicon are the two main factors that affect As accumulation in rice grains. Therefore, in addition to better growth and yield of plants, application of specific nutrients in optimum quantities offers an added benefit of decreasing As content in rice grains. These nutrient elements influence speciation of As in rhizosphere, compete with As for root uptake and interfere with As translocations to the shoot and ultimately accumulation in grains. This papers critically appraises the methods, forms and rate of application, mechanisms and extent of efficiency of different mineral nutrients in decreasing As accumulation in rice grains.


Subject(s)
Arsenic/toxicity , Oryza/metabolism , Arsenic/analysis , Environmental Exposure , Environmental Pollution/prevention & control , Food Contamination , Humans , Minerals , Soil Pollutants/analysis , Soil Pollutants/toxicity
17.
Int J Phytoremediation ; 19(11): 1029-1036, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28441035

ABSTRACT

Finding appropriate adsorbent may improve the quality of drinking water in those regions where arsenic (As) and fluoride (F-) are present in geological formations. In this study, we evaluated the efficiency of potato peel and rice husk ash (PPRH-ash)-derived adsorbent for the removal of As and F from contaminated water. Evaluation was done in batch adsorption experiments, and the effect of pH, initial adsorbate concentration, contact time, and adsorbent dose were studied. Characteristics of adsorbents were analyzed using scanning electron micropcope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Both the Langmuir and Freundlich isotherm models fitted well for F- and As sorption process. The maximum adsorption capacity of adsorbent for As and F- was 2.17 µg g-1 and 2.91 mg g-1, respectively. The As and Fi removal was observed between pH 7 and 9. The sorption process was well explained with pseudo-second order kinetic model. Arsenic adsorption was not decreased in the presence of carbonate and sulfate. Results from this study demonstrated potential utility of this agricultural biowaste, which could be developed into a viable filtration technology for As and F- removal in As- and F-contaminated water streams.


Subject(s)
Arsenic , Biodegradation, Environmental , Fluorides , Oryza , Water Purification , Adsorption , Agriculture , Drinking Water , Kinetics , Solanum tuberosum , Water Pollutants, Chemical , Water Purification/methods
18.
Int J Phytoremediation ; 18(10): 1022-8, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-26852881

ABSTRACT

Little is known about the effect of elemental sulfur on lead uptake and its toxicity in wheat. A pot experiment was conducted with the purpose to examine the impact of sulfur on improving Pb solubility in soil, and uptake and accumulation in wheat plants. The effect of three levels of lead (0, 50, and 100 mg/kg soil) and sulfur (0, 150, and 300 mmol/kg soil) was tested in all possible combinations. Root dry matter, straw, and grain yields, and the photosynthetic and transpiration rates decreased significantly with increase in the concentration of Pb in the soil. However, sulfur fertilization in the presence of Pb improved the photosynthetic and transpiration rates and consequently increased the straw and grain yields of wheat. It also enhanced Pb accumulation in roots, its translocation from roots to shoot, and accumulation in grain. S and Zn contents of different plant parts were also enhanced. Thus, by mitigating the toxic effect of Pb and improving wheat growth, sulfur enhances Pb accumulation by the aboveground plant parts and hence the phytoextraction capacity of wheat. However, total accumulation of Pb shows that wheat plant cannot be considered as a suitable candidate for phytoremediation.


Subject(s)
Lead/metabolism , Soil Pollutants/metabolism , Sulfur/metabolism , Sulfur/pharmacology , Triticum/drug effects , Triticum/growth & development , Biodegradation, Environmental/drug effects , Pakistan , Soil/chemistry , Triticum/metabolism
19.
Ecotoxicol Environ Saf ; 126: 256-263, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26773835

ABSTRACT

Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa.


Subject(s)
Brassicaceae/metabolism , Nickel/metabolism , Pseudomonas putida/physiology , Biodegradation, Environmental , Brassicaceae/drug effects , Brassicaceae/growth & development , Brassicaceae/microbiology , Nickel/toxicity , Plant Roots/growth & development , Seedlings/metabolism , Soil/chemistry , Stress, Physiological
20.
J Ethnopharmacol ; 155(1): 352-61, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24882732

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Two thirds of the world's population relies on medicinal plants for centuries for several human pathologies. Present study aimed to identify, catalogue and document the large number of medicinal plants used in traditional medicine in Soan Valley, Salt Range, Pakistan. MATERIALS AND METHODS: Informal interviews were conducted involving a total of 255 villagers (155 male and 65 female and 35 herbalists) to elicit the knowledge and use of medicinal plants. RESULTS: Local communities possessed knowledge of fifty eight (58) medicinal plant species belonging to thirty five (35) families to treat fifteen ailment categories. Whole plant and leaves were the most frequently used plant parts (24%) followed by seed (14%), root (12%), flower (7%), bulb (6%), fruit (4%), stem (3%), latex and rhizome (2%) and sap and gum (1%). Frequently used growth forms of medicinal plants were wild herbs (63%) followed by cultivated herbs (14%), wild trees (11%), wild shrubs (10%) and wild and cultivated herbs (2%). Preparations were administrated generally through oral and topical routes. Local people were familiar mostly with the species in order to deal common ailments particularly cough, cold, digestive problems, fever, headache, and skin infections. Complex ailments were treated by traditional healers. Justica adhatoda, Olea ferruginea, Amaranthus viridis and Mentha royleana were identified as plants with high use value (UV). CONCLUSIONS: This study revealed that the area harbors high diversity of medicinal flora. Despite gradual socio-cultural transformation, local communities still hold ample knowledge of plants and their uses. The reliance on traditional medicines was associated with the lack of modern health care facilities, poverty and the traditional belief of their effectiveness. Medicinal plants play a significant role in management of various human diseases in the study area. A high degree of consensus among the informants was an indicative that plant use and knowledge were still strong, and preservation of this knowledge showed good foresight in the future. Awareness was thus needed to be raised among local people on sustainable utilization and management of plant resources.


Subject(s)
Health Knowledge, Attitudes, Practice , Medicine, Traditional , Plant Preparations/therapeutic use , Plants, Medicinal/chemistry , Data Collection , Ethnobotany , Ethnopharmacology , Female , Humans , Male , Middle Aged , Pakistan , Phytotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...