Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Vis ; 25: 283-294, 2019.
Article in English | MEDLINE | ID: mdl-31263351

ABSTRACT

Purpose: Our study aimed to determine whether the altered expression of biomarkers linked to corneal injuries, such as the edema-regulating proteins aquaporin-1 and aquaporin-5 (AQP1 and AQP5), occurred following primary blast exposure. Methods: Adult male Dutch Belted rabbits were anesthetized and exposed to blast waves with peak overpressures of 142.5-164.1 kPa (20.4-23.4 psi). These exposure groups experienced peak blast overpressure-specific impulses (impulse per unit surface area) of 199.6-228.5 kPa-ms. Unexposed rabbits were included as controls. The animals were euthanized at 48 h post-exposure. Corneas obtained from the euthanized blast-exposed and control rabbits were processed for quantitative PCR and western blot to quantify mRNA and the protein expression of AQP1 and AQP5. Immunohistochemical analysis was conducted to determine the cellular localization of AQP1 and AQP5. Results: Corneal thickness increased up to 18% with the peak blast overpressure-specific impulses of 199.6-228.5 kPa-ms at 48 h after blast exposure. mRNA levels of AQP1 and AQP5 increased in the whole cornea lysates of blast-exposed rabbits relative to those of the controls. Western blot analyses of whole cornea lysates revealed that the expression levels of AQP1 and AQP5 were approximately 2- and 1.5-fold higher, respectively, in blast-exposed rabbits compared to controls. The extent of AQP1 immunostaining (AQP1-IS) increased in the epithelial cell layer after blast exposure. The AQP5-IS pattern changed from a mixed membrane and cytoplasmic expression in the controls to predominantly cytoplasmic expression in the basally located cornea epithelial cells of blast-exposed rabbits. Conclusions: Primary blast exposure resulted in edema-related changes in the cornea manifested by the altered expression of the edema-regulating proteins AQP1 and AQP5 with blast overpressure-specific impulses. These findings support potential acute corneal injury mechanisms in which the altered regulation of water permeability is caused by primary blast exposure.


Subject(s)
Aquaporin 1/genetics , Aquaporin 5/genetics , Blast Injuries/genetics , Cornea/metabolism , Corneal Injuries/genetics , Gene Expression Regulation , Animals , Aquaporin 1/metabolism , Aquaporin 5/metabolism , Blast Injuries/pathology , Cornea/pathology , Corneal Injuries/pathology , Corneal Pachymetry , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits , Slit Lamp
2.
J Trauma ; 67(4): 856-64, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19820596

ABSTRACT

INTRODUCTION: Trauma-induced coagulopathy, acidosis, and hypothermia form a "lethal triad" that is difficult to treat and is associated with extremely high mortality. This study was performed at three academic centers to evaluate whether resuscitation with blood components could reverse the coagulopathy in a complex polytrauma model. METHODS: Yorkshire swine (40 +/- 5 kg) were subjected to a three-phase protocol: (a) "Prehospital" phase = femur fracture, hemorrhage (60% blood volume), and 30 minutes shock + infusion of saline (3x shed blood) + induction of hypothermia (33 degrees C); (b) "Early hospital" phase = grade V liver injury; and (c) "Operative" phase= liver packing. After liver packing, the animals (n = 60) were randomized to the following groups: (1) Sham-instrumentation and anesthesia without hemorrhage/injuries, (2) fresh whole blood (FWB), (3) 6% hetastarch (Hextend), (4) fresh frozen plasma/packed RBCs in 1:1 ratio (1:1 FFP/PRBC), and (5) FFP alone. Treatment volumes were equal to the volume of shed blood. Hemodynamic and physiologic parameters and coagulation profile (thrombelastography, prothrombin time, activated partial thromboplastin time, international normalized ratio, and platelets) were monitored during the experiment and for 4 hours posttreatment. RESULTS: At the end of prehospital phase, animals had developed significant acidosis (lactate >5 mmol/L and base deficit >9 mmol/L) and coagulopathy. Posttreatment mortality rates were 85% and 0% for the Hextend and blood component treated groups, respectively (p < 0.05). Hemodynamic parameters and survival rates were similar in groups that were treated with blood products (FWB, FFP, and FFP:PRBC). Animals treated with FFP and Hextend had significant anemia compared with the groups that received red blood cells (FWB and FFP:PRBC). Treatment with FFP and FFP:PRBC corrected the coagulopathy as effectively as FWB, whereas Hextend treatment worsened coagulopathy. CONCLUSIONS: In this reproducible model, we have shown that trauma-associated coagulopathy is made worse by hetastarch, but it can be rapidly reversed with the administration of blood components. Impressively, infusion of FFP, even without any red blood cells, can correct the coagulopathy and result in excellent early survival.


Subject(s)
Blood Coagulation Disorders/therapy , Multiple Trauma/therapy , Plasma Substitutes/therapeutic use , Plasma , Analysis of Variance , Animals , Blood Coagulation Disorders/etiology , Blood Transfusion , Disease Models, Animal , Drug Evaluation, Preclinical , Erythrocyte Transfusion , Female , Hydroxyethyl Starch Derivatives/therapeutic use , Materials Testing , Multiple Trauma/complications , Multiple Trauma/mortality , Random Allocation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL