Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532508

ABSTRACT

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Subject(s)
Capillaries/abnormalities , Sturge-Weber Syndrome , Vascular Malformations , Humans , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/pathology , Sturge-Weber Syndrome/therapy , Endothelial Cells/metabolism , Capillaries/pathology , Macrophages/metabolism , Tumor Microenvironment , Vesicular Transport Proteins/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
2.
Cells ; 11(3)2022 01 26.
Article in English | MEDLINE | ID: mdl-35159229

ABSTRACT

The blood-brain barrier (BBB) regulates the interaction between the highly vulnerable central nervous system (CNS) and the peripheral parts of the body. Disruption of the BBB has been associated with multiple neurological disorders, in which immune pathways in microglia are suggested to play a key role. Currently, many in vitro BBB model systems lack a physiologically relevant microglia component in order to address questions related to the mechanism of BBB integrity or the transport of molecules between the periphery and the CNS. To bridge this gap, we redefined a serum-free medium in order to allow for the successful co-culturing of human inducible pluripotent stem cell (hiPSC)-derived microglia and hiPSC-derived brain microvascular endothelial-like cells (BMECs) without influencing barrier properties as assessed by electrical resistance. We demonstrate that hiPSC-derived microglia exposed to lipopolysaccharide (LPS) weaken the barrier integrity, which is associated with the secretion of several cytokines relevant in neuroinflammation. Consequently, here we provide a simplistic humanised BBB model of neuroinflammation that can be further extended (e.g., by addition of other cell types in a more complex 3D architecture) and applied for mechanistic studies and therapeutic compound profiling.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Blood-Brain Barrier/metabolism , Cells, Cultured , Coculture Techniques , Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/physiology , Neuroinflammatory Diseases
3.
J Pers Med ; 12(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35207637

ABSTRACT

Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood-brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.

4.
Arterioscler Thromb Vasc Biol ; 42(1): e27-e43, 2022 01.
Article in English | MEDLINE | ID: mdl-34670408

ABSTRACT

OBJECTIVE: Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) ß3, a downstream effector of Gαq. Activated PLCß3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCß3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS: Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCß3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.


Subject(s)
Angiopoietin-2/metabolism , Capillaries/metabolism , Endothelial Progenitor Cells/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Neovascularization, Pathologic , Sturge-Weber Syndrome/metabolism , Adolescent , Adult , Aged , Angiopoietin-2/genetics , Animals , Capillaries/abnormalities , Cells, Cultured , Child , Child, Preschool , Endothelial Progenitor Cells/pathology , Endothelial Progenitor Cells/transplantation , Female , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Infant , Infant, Newborn , Male , Mice, Nude , Mutation , Phenotype , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Protein Kinase C/metabolism , Signal Transduction , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/pathology , Up-Regulation
5.
Cardiovasc Res ; 117(13): 2652-2663, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33751034

ABSTRACT

AIMS: Recent evidence suggests that 'vulnerable plaques', which have received intense attention as underlying mechanism of acute coronary syndromes over the decades, actually rarely rupture and cause clinical events. Superficial plaque erosion has emerged as a growing cause of residual thrombotic complications of atherosclerosis in an era of increased preventive measures including lipid lowering, antihypertensive therapy, and smoking cessation. The mechanisms of plaque erosion remain poorly understood, and we currently lack validated effective diagnostics or therapeutics for superficial erosion. Eroded plaques have a rich extracellular matrix, an intact fibrous cap, sparse lipid, and few mononuclear cells, but do harbour neutrophil extracellular traps (NETs). We recently reported that NETs amplify and propagate the endothelial damage at the site of arterial lesions that recapitulate superficial erosion in mice. We showed that genetic loss of protein arginine deiminase (PAD)-4 function inhibited NETosis and preserved endothelial integrity. The current study used systemic administration of targeted nanoparticles to deliver an agent that limits NETs formation to probe mechanisms of and demonstrate a novel therapeutic approach to plaque erosion that limits endothelial damage. METHODS AND RESULTS: We developed Collagen IV-targeted nanoparticles (Col IV NP) to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure. We assessed the binding capability of the targeting ligand in vitro and evaluated Col IV NP targeting to areas of denuded endothelium in vivo in a mouse preparation that recapitulates features of superficial erosion. Delivery of the PAD4 inhibitor GSK484 reduced NET accumulation at sites of intimal injury and preserved endothelial continuity. CONCLUSIONS: NPs directed to Col IV show selective uptake and delivery of their payload to experimentally eroded regions, illustrating their translational potential. Our results further support the role of PAD4 and NETs in superficial erosion.


Subject(s)
Atherosclerosis/drug therapy , Collagen Type IV/metabolism , Drug Carriers , Endothelial Cells/drug effects , Enzyme Inhibitors/administration & dosage , Extracellular Traps/metabolism , Nanoparticles , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Animals , Atherosclerosis/enzymology , Atherosclerosis/pathology , Basement Membrane/metabolism , Cell Culture Techniques, Three Dimensional , Cells, Cultured , Collagen Type IV/chemistry , Disease Models, Animal , Drug Compounding , Drug Liberation , Endothelial Cells/enzymology , Endothelial Cells/pathology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Male , Mice, Knockout, ApoE , Nanotechnology , Plaque, Atherosclerotic , Protein Binding , Protein-Arginine Deiminase Type 4/metabolism , Surface Properties , Tissue Distribution
6.
Curr Opin Hematol ; 26(3): 179-184, 2019 05.
Article in English | MEDLINE | ID: mdl-30870248

ABSTRACT

PURPOSE OF REVIEW: Capillary malformations, the most common type of vascular malformation, are caused by a somatic mosaic mutation in GNAQ, which encodes the Gαq subunit of heterotrimeric G-proteins. How the single amino acid change - predicted to activate Gαq - causes capillary malformations is not known but recent advances are helping to unravel the mechanisms. RECENT FINDINGS: The GNAQ R183Q mutation is present not only in endothelial cells isolated from skin and brain capillary malformations but also in brain tissue underlying the capillary malformation, raising questions about the origin of capillary malformation-causing cells. Insights from computational analyses shed light on the mechanisms of constitutive activation and new basic science shows Gαq plays roles in sensing shear stress and in regulating cerebral blood flow. SUMMARY: Several studies confirm the GNAQ R183Q mutation in 90% of nonsyndromic and Sturge-Weber syndrome (SWS) capillary malformations. The mutation is enriched in endothelial cells and blood vessels isolated from skin, brain, and choroidal capillary malformations, but whether the mutation resides in other cell types must be determined. Further, the mechanisms by which the R183Q mutation alters microvascular architecture and blood flow must be uncovered to develop new treatment strategies for SWS in particular, a devastating disease for which there is no cure.


Subject(s)
Capillaries , GTP-Binding Protein alpha Subunits, Gq-G11 , Mutation, Missense , Neoplasm Proteins , Sturge-Weber Syndrome , Vascular Malformations , Amino Acid Substitution , Animals , Capillaries/enzymology , Capillaries/pathology , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Sturge-Weber Syndrome/enzymology , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/pathology , Sturge-Weber Syndrome/therapy , Vascular Malformations/enzymology , Vascular Malformations/genetics , Vascular Malformations/pathology , Vascular Malformations/therapy
7.
JAMA Ophthalmol ; 137(1): 91-95, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30422215

ABSTRACT

Importance: Choroidal hemangiomas are defined by a thickened choroid owing to vessel overgrowth, which may increase the intraocular pressure and lead to glaucoma. Choroidal hemangioma and glaucoma often co-occur in patients with Sturge-Weber syndrome, a rare neurocutaneous disorder characterized by capillary malformations. Objective: To determine whether the mutation found in most capillary malformations, GNAQ R183Q (c.548G>A), was present in the choroidal hemangioma of a patient with Sturge-Weber syndrome. Design, Setting, and Participant: Using laser-capture microdissection, choroidal blood vessels were isolated from paraffin-embedded tissue sections, and genomic DNA was extracted for mutational analysis. Choroidal sections were analyzed in parallel. A patient with choroidal hemangioma and Sturge-Weber syndrome who had undergone enucleation was analyzed in this study at Boston Children's Hospital. Negative controls were choroidal tissue from an eye with retinoblastoma and unaffected lung tissue; brain tissue from a different patient with Sturge-Weber syndrome served as a positive control. Infantile hemangioma was analyzed as well. Data were analyzed in 2018. Main Outcomes and Measures: The mutant allelic frequency of GNAQ R183 and GNAQ Q209L/H/P was determined by droplet digital polymerase chain reaction on isolated genomic DNA. The infantile hemangioma marker glucose transporter-1 was visualized by immunofluorescent staining of tissue sections. Results: The GNAQ R183Q mutation was present in the patient's choroidal vessels (21.1%) at a frequency similar to that found in brain tissue from a different patient with Sturge-Weber syndrome (25.1%). In contrast, choroidal vessels from a case of retinoblastoma were negative for the mutation (0.5%), as was lung tissue (0.2%). The patient's choroidal tissue was negative for the 3 GNAQ mutations associated with congenital hemangioma and for the infantile hemangioma marker glucose transporter-1. Conclusions and Relevance: The results suggest that a more accurate description for choroidal hemangioma in patients with Sturge-Weber syndrome is choroidal capillary malformation. This finding may explain why propranolol, used to treat infantile hemangiomas, has been largely ineffective in patients with choroidal hemangioma. Further studies are needed to corroborate this finding.


Subject(s)
Capillaries/abnormalities , Choroid Neoplasms/genetics , Choroid/blood supply , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Hemangioma/genetics , Mutation , Polymorphism, Single Nucleotide , Sturge-Weber Syndrome/genetics , Vascular Malformations/genetics , Biomarkers, Tumor/metabolism , Choroid Neoplasms/metabolism , DNA Mutational Analysis , Fluorescent Antibody Technique, Indirect , Glucose Transporter Type 1/metabolism , Hemangioma/metabolism , Humans , Infant , Polymerase Chain Reaction , Sturge-Weber Syndrome/metabolism
8.
Angiogenesis ; 21(4): 861-871, 2018 11.
Article in English | MEDLINE | ID: mdl-29967964

ABSTRACT

Idiopathic pulmonary fibrosis is characterized by a progressive scarring and stiffening of the peripheral lung tissue that decreases lung function. Over the course of the disease, the lung microvasculature undergoes extensive remodeling. There is increased angiogenesis around fibrotic foci and an absence of microvessels within the foci. To elucidate how the anti-fibrotic drug nintedanib acts on vascular remodeling, we used an in vitro model of perfusable microvessels made with primary endothelial cells and primary lung fibroblasts in a microfluidic chip. The microvasculature model allowed us to study the impact of nintedanib on permeability, vascularized area, and cell-cell interactions. The anti-vasculogenic impact of nintedanib was visible at the minimal concentrations of 10 nM, showing a significant increase in vessel permeability. Furthermore, nintedanib decreased microvessel density, diameter, and influenced fibroblast organization around endothelial microvessels. These results show that nintedanib acts on the endothelial network formation and endothelial-perivascular interactions. Advanced in vitro microvasculature models may thus serve to pinpoint the mechanistic effect of anti-fibrotic drugs on the microvascular remodeling in 3D and refine findings from animal studies.


Subject(s)
Fibroblasts , Idiopathic Pulmonary Fibrosis , Indoles/pharmacology , Lung , Microvessels , Vascular Remodeling/drug effects , Cell Culture Techniques , Coculture Techniques , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lab-On-A-Chip Devices , Lung/blood supply , Lung/metabolism , Lung/pathology , Microvessels/metabolism , Microvessels/pathology
9.
Sci Rep ; 8(1): 5898, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29651108

ABSTRACT

In the context of xenotransplantation, in ischemia/reperfusion injury as well as in cardiovascular research, the study of the fascinating interplay between endothelial cells (EC) and the plasma cascade systems often requires in vitro models. Blood vessels are hardly reproducible with standard flat-bed culture systems and flow-plate assays are limited in their low surface-to-volume ratio which impedes the study of the anticoagulant properties of the endothelial cells. According to the 3R regulations (reduce, replace and refine animal experimentation) we developed a closed circuit microfluidic in vitro system in which endothelial cells are cultured in 3D round section microchannels and subjected to physiological, pulsatile flow. In this study, a 3D monolayer of porcine aortic EC was perfused with human serum to mimic a xenotransplantation setting. Complement as well as EC activation was assessed in the presence or absence of complement inhibitors showing the versatility of the model for drug testing. Complement activation products as well as E-selectin expression were detected and visualized in situ by high resolution confocal microscopy. Furthermore, porcine pro-inflammatory cytokines as well as soluble complement components in the recirculating fluid phase were detected after human serum perfusion providing a better overview of the artificial vascular environment.


Subject(s)
Cell Culture Techniques , Complement System Proteins/genetics , Endothelial Cells/immunology , Lab-On-A-Chip Devices , Animals , Aorta/immunology , Aorta/ultrastructure , Complement Activation/drug effects , Complement Inactivating Agents/pharmacology , Complement System Proteins/immunology , Cytokines/genetics , Cytokines/immunology , Dextran Sulfate/pharmacology , E-Selectin/genetics , E-Selectin/immunology , Endothelial Cells/drug effects , Endothelial Cells/ultrastructure , Gene Expression , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Microscopy, Confocal , Models, Biological , Pulsatile Flow , Rheology , Swine , Transplantation, Heterologous
10.
Sci Rep ; 7(1): 10636, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878242

ABSTRACT

Pericytes represent important support cells surrounding microvessels found in solid organs. Emerging evidence points to their involvement in tumor progression and metastasis. Although reported to be present in the human lung, their specific presence and functional orientation within the tumor microenvironment in non-small cell lung cancer (NSCLC) has not yet been adequately studied. Using a multiparameter approach, we prospectively identified, sorted and expanded mesenchymal cells from human primary NSCLC samples based on co-expression of CD73 and CD90 while lacking hematopoietic and endothelial lineage markers (CD45, CD31, CD14 and Gly-A) and the epithelial marker EpCAM. Compared to their normal counterpart, tumor-derived Lineage-EpCAM-CD73+CD90+ cells showed enhanced expression of the immunosuppressive ligand PD-L1, a higher constitutive secretion of IL-6 and increased basal αSMA levels. In an in vitro model of 3D microvessels, both tumor-derived and matched normal Lineage-EpCAM-CD73+CD90+ cells supported the assembly of perfusable vessels. However, tumor-derived Lineage-EpCAM-CD73+CD90+ cells led to the formation of vessels with significantly increased permeability. Together, our data show that perivascular-like cells present in NSCLC retain functional abnormalities in vitro. Perivascular-like cells as an eventual target in NSCLC warrants further investigation.


Subject(s)
B7-H1 Antigen/genetics , Capillary Permeability , Interleukin-6/biosynthesis , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Microvessels/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , 5'-Nucleotidase/metabolism , Biomarkers , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial Cell Adhesion Molecule/metabolism , Humans , Lung Neoplasms/pathology , Mesenchymal Stem Cells/metabolism , Pericytes/metabolism , Stromal Cells/metabolism , Thy-1 Antigens/metabolism , Transforming Growth Factor beta/metabolism
11.
Mol Cell ; 61(6): 914-24, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26990994

ABSTRACT

Absolute quantification of macromolecules in single cells is critical for understanding and modeling biological systems that feature cellular heterogeneity. Here we show extremely sensitive and absolute quantification of both proteins and mRNA in single mammalian cells by a very practical workflow that combines proximity ligation assay (PLA) and digital PCR. This digital PLA method has femtomolar sensitivity, which enables the quantification of very small protein concentration changes over its entire 3-log dynamic range, a quality necessary for accounting for single-cell heterogeneity. We counted both endogenous (CD147) and exogenously expressed (GFP-p65) proteins from hundreds of single cells and determined the correlation between CD147 mRNA and the protein it encodes. Using our data, a stochastic two-state model of the central dogma was constructed and verified using joint mRNA/protein distributions, allowing us to estimate transcription burst sizes and extrinsic noise strength and calculate the transcription and translation rate constants in single mammalian cells.


Subject(s)
Basigin/isolation & purification , Polymerase Chain Reaction/methods , RNA, Messenger/isolation & purification , Single-Cell Analysis/methods , Animals , Basigin/genetics , HEK293 Cells , Humans , RNA, Messenger/genetics
12.
Tissue Eng Part A ; 21(15-16): 2166-76, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25891384

ABSTRACT

The formation of blood vessels is a complex tissue-specific process that plays a pivotal role during developmental processes, in wound healing, cancer progression, fibrosis, and other pathologies. To study vasculogenesis and vascular remodeling in the context of the lung, we developed an in vitro microvascular model that closely mimics the human lung microvasculature in terms of three-dimensional architecture, accessibility, functionality, and cell types. Human pericytes from the distal airway were isolated and characterized using flow cytometry. To assess their role in the generation of normal microvessels, lung pericytes were mixed in fibrin gel and seeded into well-defined microcompartments together with primary endothelial cells (human umbilical cord vein endothelial cells). Patent microvessels covering an area of 3.1 mm(2) formed within 3-5 days and were stable for up to 14 days. Soluble signals from the lung pericytes were necessary to establish perfusability, and pericytes migrated toward endothelial microvessels. Cell-cell communication in the form of adherens and tight junctions, as well as secretion of basement membrane were confirmed using transmission electron microscopy and immunocytochemistry on chip. Direct coculture of pericytes with endothelial cells decreased the microvascular permeability by one order of magnitude from 17.8×10(-6) to 2.0×10(-6) cm/s and led to vessels with significantly smaller and less variable diameter. Upon phenylephrine administration, vasoconstriction was observed in microvessels lined with pericytes, but not in endothelial microvessels only. Perfusable microvessels were also generated with human lung microvascular endothelial cells and lung pericytes. Human lung pericytes were thus shown to have a prominent influence on microvascular morphology, permeability, vasoconstriction, and long-term stability in an in vitro microvascular system. This biomimetic platform opens new possibilities to test functions and interactions of patient-derived cells in a physiologically relevant microvascular setting.


Subject(s)
Endothelial Cells/metabolism , Lung/metabolism , Microvessels/metabolism , Models, Cardiovascular , Neovascularization, Physiologic , Pericytes/metabolism , Vascular Remodeling , Cells, Cultured , Coculture Techniques , Endothelial Cells/cytology , Humans , Lung/cytology , Microvessels/cytology , Pericytes/cytology
13.
Lab Chip ; 12(13): 2313-6, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22565166

ABSTRACT

Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.


Subject(s)
Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating , Cell Culture Techniques , Cell Line, Tumor , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Luminescent Proteins/chemistry , Male , Microarray Analysis , Microfluidic Analytical Techniques/instrumentation , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...