Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Neuroimage Clin ; 42: 103585, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38531165

ABSTRACT

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.

2.
Biol Psychiatry ; 91(5): 488-497, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34772505

ABSTRACT

Pediatric traumatic brain injury (TBI) is a public health crisis, with neurobehavioral morbidity observed years after an injury associated with changes in related brain structures. A substantial literature base has established family environment as a significant predictor of neurobehavioral outcomes following pediatric TBI. The neural mechanisms linking family environment to neurobehavioral outcomes have, however, received less empiric study in this population. In contrast, limbic structural differences as well as challenges with emotional adjustment and behavioral regulation in non-TBI populations have been linked to a multitude of family environmental factors, including family stress, parenting style, and adverse childhood experiences. In this article, we systematically review the more comprehensive literature on family environment and neurobehavioral outcomes in pediatric TBI and leverage the work in both TBI and non-TBI populations to expand our understanding of the underlying neural mechanisms. Thus, we summarize the extant literature on the family environment's role in neurobehavioral sequelae in children with TBI and explore potential neural correlates by synthesizing the wealth of literature on family environment and limbic development, specifically related to the amygdala. This review underscores the critical role of environmental factors, especially those predating the injury, in modeling recovery outcomes post-TBI in childhood, and discusses clinical and research implications across pediatric populations. Given the public health crisis of pediatric TBI, along with the context of sparse available medical interventions, a broader understanding of factors contributing to outcomes is warranted to expand the range of intervention targets.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries, Traumatic/complications , Child , Humans , Parenting
3.
Front Rehabil Sci ; 3: 1064215, 2022.
Article in English | MEDLINE | ID: mdl-36684686

ABSTRACT

In survivors of moderate to severe traumatic brain injury (msTBI), affective disruptions often remain underdetected and undertreated, in part due to poor understanding of the underlying neural mechanisms. We hypothesized that limbic circuits are integral to affective dysregulation in msTBI. To test this, we studied 19 adolescents with msTBI 17 months post-injury (TBI: M age 15.6, 5 females) as well as 44 matched healthy controls (HC: M age 16.4, 21 females). We leveraged two previously identified, large-scale resting-state (rsfMRI) networks of the amygdala to determine whether connectivity strength correlated with affective problems in the adolescents with msTBI. We found that distinct amygdala networks differentially predicted externalizing and internalizing behavioral problems in patients with msTBI. Specifically, patients with the highest medial amygdala connectivity were rated by parents as having greater externalizing behavioral problems measured on the BRIEF and CBCL, but not cognitive problems. The most correlated voxels in that network localize to the rostral anterior cingulate (rACC) and posterior cingulate (PCC) cortices, predicting 48% of the variance in externalizing problems. Alternatively, patients with the highest ventrolateral amygdala connectivity were rated by parents as having greater internalizing behavioral problems measured on the CBCL, but not cognitive problems. The most correlated voxels in that network localize to the ventromedial prefrontal cortex (vmPFC), predicting 57% of the variance in internalizing problems. Both findings were independent of potential confounds including ratings of TBI severity, time since injury, lesion burden based on acute imaging, demographic variables, and other non-amygdalar rsfMRI metrics (e.g., rACC to PCC connectivity), as well as macro- and microstructural measures of limbic circuitry (e.g., amygdala volume and uncinate fasciculus fractional anisotropy). Supporting the clinical significance of these findings, patients with msTBI had significantly greater externalizing problem ratings than healthy control participants and all the brain-behavior findings were specific to the msTBI group in that no similar correlations were found in the healthy control participants. Taken together, frontoamygdala pathways may underlie chronic dysregulation of behavior and mood in patients with msTBI. Future work will focus on neuromodulation techniques to directly affect frontoamygdala pathways with the aim to mitigate such dysregulation problems.

4.
Neurology ; 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050006

ABSTRACT

OBJECTIVE: Our study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes. METHODS: Data from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline. RESULTS: Five hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (𝞫=0.043), which coincided with more parent-reported behavioral problems (𝞫=-0.0027). CONCLUSIONS: WM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes.

5.
J Clin Med ; 10(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546148

ABSTRACT

Dysregulation of the autonomic nervous system (ANS) may play an important role in the development and maintenance of persistent post-concussive symptoms (PPCS). Post-injury breathing dysfunction, which is influenced by the ANS, has not been well-studied in youth. This study evaluated cardiorespiratory functioning at baseline in youth patients with PPCS and examined the relationship of cardiorespiratory variables with neurobehavioral outcomes. Participants were between the ages of 13-25 in two groups: (1) Patients with PPCS (concussion within the past 2-16 months; n = 13) and (2) non-injured controls (n = 12). Capnometry was used to obtain end-tidal CO2 (EtCO2), oxygen saturation (SaO2), respiration rate (RR), and pulse rate (PR) at seated rest. PPCS participants exhibited a reduced mean value of EtCO2 in exhaled breath (M = 36.3 mmHg, SD = 2.86 mmHg) and an altered inter-correlation between EtCO2 and RR compared to controls. Neurobehavioral outcomes including depression, severity of self-reported concussion symptoms, cognitive catastrophizing, and psychomotor processing speed were correlated with cardiorespiratory variables when the groups were combined. Overall, results from this study suggest that breathing dynamics may be altered in youth with PPCS and that cardiorespiratory outcomes could be related to a dimension of neurobehavioral outcomes associated with poorer recovery from concussion.

6.
Brain Imaging Behav ; 15(2): 576-584, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32720179

ABSTRACT

Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.


Subject(s)
Athletic Injuries , Brain Concussion , Brain Injuries , Athletic Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Concussion/epidemiology , Brain Concussion/etiology , Humans , Magnetic Resonance Imaging , Reproducibility of Results
7.
JAMA Netw Open ; 3(11): e2025082, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33175176

ABSTRACT

Importance: Concussions are a common occurrence in young athletes. Hypobaric hypoxemia, such as that experienced during airplane travel, can potentially cause alterations to cerebral blood flow and increased neuroinflammatory response. It remains unknown whether flying early after a concussion may influence the clinical course of injury. Objective: To determine whether there is an association between concussion recovery and airplane travel in collegiate athletes and military cadets. Design, Setting, and Participants: This cohort study was conducted by the National Collegiate Athletic Association and US Department of Defense Concussion Assessment, Research, and Education Consortium from August 3, 2014, to September 13, 2018. Participant groups were categorized by those who flew within 72 hours of injury and those who did not fly. All participants included in the final analyses had complete data of interest and only 1 injury during the study. Data analysis was performed from September 2018 to March 2020. Main Outcomes and Measures: Recovery outcome measures were defined as time (in days) from injury to return to activity, school, and baseline symptoms. Symptom and headache severity scores were derived from the Sports Concussion Assessment Tool-Third Edition. Scores for both groups were taken at baseline and a median of 2 days after injury. Results: A total of 92 participants who flew (mean [SD] age, 19.1 [1.2] years; 55 male [59.8%]) and 1383 participants who did not fly (mean [SD] age, 18.9 [1.3] years; 809 male [58.5%]) were included in the analysis of symptom recovery outcomes (analysis 1). Similarly, 100 participants who flew (mean [SD] age, 19.2 [1.2] years; 63 male [63.0%]) and 1577 participants who did not fly (mean [SD] age, 18.9 [1.3] years; 916 male [58.1%]) were included in the analysis of symptom severity outcomes (analysis 2). No significant group differences were found regarding recovery outcome measures. Likewise, there were no group differences in symptom (estimated mean difference, 0.029; 95% CI, -0.083 to 0.144; P = .67) or headache (estimated mean difference, -0.007; 95% CI, -0.094 to 0.081; P = .91) severity scores. Conclusions and Relevance: Airplane travel early after concussion was not associated with recovery or severity of concussion symptoms. These findings may help guide future recommendations on flight travel after concussion in athletes.


Subject(s)
Athletes/statistics & numerical data , Brain Concussion/diagnosis , Military Personnel/statistics & numerical data , Recovery of Function/physiology , Adolescent , Air Travel/statistics & numerical data , Aircraft , Athletic Injuries/complications , Brain Concussion/epidemiology , Cohort Studies , Female , Humans , Male , Neuropsychological Tests/statistics & numerical data , Severity of Illness Index , Sports , Students , Young Adult
8.
Front Psychol ; 6: 1860, 2015.
Article in English | MEDLINE | ID: mdl-26696928

ABSTRACT

A growing body of work suggests that sensory processes may also contribute to affective experience. In this study, we performed a meta-analysis of affective experiences driven through visual, auditory, olfactory, gustatory, and somatosensory stimulus modalities including study contrasts that compared affective stimuli to matched neutral control stimuli. We found, first, that limbic and paralimbic regions, including the amygdala, anterior insula, pre-supplementary motor area, and portions of orbitofrontal cortex were consistently engaged across two or more modalities. Second, early sensory input regions in occipital, temporal, piriform, mid-insular, and primary sensory cortex were frequently engaged during affective experiences driven by visual, auditory, olfactory, gustatory, and somatosensory inputs. A classification analysis demonstrated that the pattern of neural activity across a contrast map diagnosed the stimulus modality driving the affective experience. These findings suggest that affective experiences are constructed from activity that is distributed across limbic and paralimbic brain regions and also activity in sensory cortical regions.

9.
Neuropsychologia ; 63: 235-48, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25152530

ABSTRACT

A growing body of evidence suggests that the amygdala is central to handling the demands of complex social life in primates. In this paper, we synthesize extant anatomical and functional data from rodents, monkeys, and humans to describe the topography of three partially distinct large-scale brain networks anchored in the amygdala that each support unique functions for effectively managing social interactions and maintaining social relationships. These findings provide a powerful componential framework for parsing social behavior into partially distinct neural underpinnings that differ among healthy people and disintegrate or fail to develop in neuropsychiatric populations marked by social impairment, such as autism, antisocial personality disorder, and frontotemporal dementia.


Subject(s)
Amygdala/physiology , Nerve Net/physiology , Social Behavior , Social Perception , Amygdala/anatomy & histology , Animals , Brain/physiology , Humans
10.
Hum Brain Mapp ; 35(10): 5316-27, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24862171

ABSTRACT

Individual differences in the intensity of feelings of arousal while viewing emotional pictures have been associated with the magnitude of task-evoked blood-oxygen dependent (BOLD) response in the amygdala. Recently, we reported that individual differences in feelings of arousal are associated with task-free (resting state) connectivity within the salience network. There has not yet been an investigation of whether these two types of functional magnetic resonance imaging (MRI) measures are redundant or independent in their relationships to behavior. Here we tested the hypothesis that a combination of task-evoked amygdala activation and task-free amygdala connectivity within the salience network relate to individual differences in feelings of arousal while viewing of negatively potent images. In 25 young adults, results revealed that greater task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network each contributed independently to feelings of arousal, predicting a total of 45% of its variance. Individuals who had both increased task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network had the most heightened levels of arousal. Task-evoked amygdala activation and task-free amygdala connectivity within the salience network were not related to each other, suggesting that resting-state and task-evoked dynamic brain imaging measures may provide independent and complementary information about affective experience, and likely other kinds of behaviors as well.


Subject(s)
Amygdala/physiology , Arousal/physiology , Brain Mapping , Emotions , Adult , Amygdala/blood supply , Echo-Planar Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net , Neural Pathways/blood supply , Neural Pathways/physiology , Oxygen/blood , Risk-Taking , Young Adult
11.
J Neurol Neurosurg Psychiatry ; 85(4): 438-448, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24133285

ABSTRACT

Patients with frontotemporal dementia (FTD) often exhibit prominent, early and progressive impairments in social behaviour. We developed the Social Impairment Rating Scale (SIRS), rated by a clinician after a structured interview, which grades the types and severity of social behavioural symptoms in seven domains. In 20 FTD patients, we used the SIRS to study the anatomic basis of social impairments. In support of hypotheses generated from a prior study of healthy adults, we found that the relative magnitude of brain atrophy in three partially dissociable corticolimbic networks anchored in the amygdala predicted the severity of distinct social impairments measured using the SIRS. Patients with the greatest atrophy in a mesolimbic, reward-related (affiliation) network exhibited the most severe socioemotional detachment, whereas patients with the greatest atrophy in an interoceptive, pain-related (aversion) network exhibited the most severe lack of social apprehension. Patients with the greatest atrophy in a perceptual network exhibited the most severe lack of awareness or understanding of others' social and emotional behaviour. Our findings underscore observations that FTD is associated with heterogeneous social symptoms that can be understood in a refined manner by measuring impairments in component processes subserved by dissociable neural networks. Furthermore, these findings support the validity of the SIRS as an instrument to measure the social symptoms of patients with FTD. Ultimately, we hope it will be useful as a longitudinal outcome measure in natural history studies and in clinical trials of putative interventions to improve social functioning.


Subject(s)
Cerebral Cortex/pathology , Frontotemporal Dementia/pathology , Frontotemporal Dementia/psychology , Limbic System/pathology , Psychiatric Status Rating Scales , Social Behavior Disorders/diagnosis , Social Behavior Disorders/pathology , Aged , Atrophy/pathology , Atrophy/psychology , Brain Mapping , Case-Control Studies , Female , Frontotemporal Dementia/complications , Humans , Male , Middle Aged , Neural Pathways/pathology , Reproducibility of Results , Social Behavior Disorders/complications , Social Behavior Disorders/psychology
12.
J Neurosci ; 32(42): 14729-41, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23077058

ABSTRACT

Using resting-state functional magnetic resonance imaging data from two independent samples of healthy adults, we parsed the amygdala's intrinsic connectivity into three partially distinct large-scale networks that strongly resemble the known anatomical organization of amygdala connectivity in rodents and monkeys. Moreover, in a third independent sample, we discovered that people who fostered and maintained larger and more complex social networks not only had larger amygdala volumes, but also amygdalae with stronger intrinsic connectivity within two of these networks: one putatively subserving perceptual abilities and one subserving affiliative behaviors. Our findings were anatomically specific to amygdalar circuitry in that individual differences in social network size and complexity could not be explained by the strength of intrinsic connectivity between nodes within two networks that do not typically involve the amygdala (i.e., the mentalizing and mirror networks), and were behaviorally specific in that amygdala connectivity did not correlate with other self-report measures of sociality.


Subject(s)
Amygdala/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Social Networking , Adolescent , Adult , Brain Mapping/methods , Female , Forecasting , Humans , Magnetic Resonance Imaging/methods , Male , Neural Pathways/physiology , Young Adult
13.
Nat Neurosci ; 14(2): 163-4, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21186358

ABSTRACT

We found that amygdala volume correlates with the size and complexity of social networks in adult humans. An exploratory analysis of subcortical structures did not find strong evidence for similar relationships with any other structure, but there were associations between social network variables and cortical thickness in three cortical areas, two of them with amygdala connectivity. These findings indicate that the amygdala is important in social behavior.


Subject(s)
Amygdala/anatomy & histology , Social Behavior , Social Support , Adult , Aged , Aged, 80 and over , Amygdala/physiology , Humans , Interpersonal Relations , Linear Models , Middle Aged , Organ Size
14.
Neuroreport ; 19(8): 817-20, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18463493

ABSTRACT

We attempted to elucidate the corticospinal tract location at the posterior limb of the internal capsule in the human brain. Ten healthy volunteers were recruited. Probabilistic mapping was performed using the functional MRI activation resulting from a hand motor task as region of interest 1 and the corticospinal tract area of the anterior pons as region of interest 2. The average location of the highest density point of the corticospinal tract was mid-posterior portion with the standard from the most medial point to the most posterior point of the lenticular nucleus. In conclusion, we demonstrated that the corticospinal tract for the hand descended through the posterior portion of the posterior limb at the mid-thalamic level.


Subject(s)
Diffusion Magnetic Resonance Imaging , Internal Capsule/anatomy & histology , Magnetic Resonance Imaging , Pyramidal Tracts/anatomy & histology , Adult , Brain Mapping , Female , Hand/innervation , Humans , Internal Capsule/physiology , Male , Models, Neurological , Pyramidal Tracts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...