Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38271603

ABSTRACT

Rhizosphere microbiome assembly is essential for plant health, but the temporal dimension of this process remains unexplored. We used a chronosequence of 150 years of the retreating Hallstätter glacier (Dachstein, Austria) to disentangle this exemplarily for the rhizosphere of three pioneer alpine plants. Time of deglaciation was an important factor shaping the rhizosphere microbiome. Microbiome functions, i.e. nutrient uptake and stress protection, were carried out by ubiquitous and cosmopolitan bacteria. The rhizosphere succession along the chronosequence was characterized by decreasing microbial richness but increasing specificity of the plant-associated bacterial community. Environmental selection is a critical factor in shaping the ecosystem, particularly in terms of plant-driven recruitment from the available edaphic pool. A higher rhizosphere microbial richness during early succession compared to late succession can be explained by the occurrence of cold-acclimated bacteria recruited from the surrounding soils. These taxa might be sensitive to changing habitat conditions that occurred at the later stages. A stronger influence of the plant host on the rhizosphere microbiome assembly was observed with increased time since deglaciation. Overall, this study indicated that well-adapted, ubiquitous microbes potentially support pioneer plants to colonize new ecosystems, while plant-specific microbes may be associated with the long-term establishment of their hosts.


Subject(s)
Microbiota , Rhizosphere , Ice Cover/microbiology , Austria , Soil Microbiology , Bacteria/genetics , Soil , Plants
2.
Commun Biol ; 6(1): 322, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966207

ABSTRACT

Earth's diverse soil microbiomes host bacteria within dynamic and fragmented aqueous habitats that occupy complex pore spaces and restrict the spatial range of ecological interactions. Yet, the spatial distributions of bacterial cells in soil communities remain underexplored. Here, we propose a modelling framework representing submillimeter-scale distributions of soil bacteria based on physical constraints supported by individual-based model results and direct observations. The spatial distribution of bacterial cell clusters modulates various metabolic interactions and soil microbiome functioning. Dry soils with long diffusion times limit localized interactions of the sparse communities. Frequently wet soils enable long-range trophic interactions between dense cell clusters through connected aqueous pathways. Biomes with high carbon inputs promote large and dense cell clusters where anoxic microsites form even in aerated soils. Micro-geographic considerations of difficult-to-observe microbial processes can improve the interpretation of data from bulk soil samples.


Subject(s)
Carbon , Soil , Carbon/metabolism , Soil Microbiology , Ecosystem , Geography , Bacteria/metabolism , Water/metabolism
3.
ISME J ; 15(11): 3315-3325, 2021 11.
Article in English | MEDLINE | ID: mdl-34035442

ABSTRACT

Soil bacterial communities are dominated by a few abundant species, while their richness is associated with rare species with largely unknown ecological roles and biogeography. Analyses of previously published soil bacterial community data using a novel classification of common and rare bacteria indicate that only 0.4% of bacterial species can be considered common and are prevalent across biomes. The remaining bacterial species designated as rare are endemic with low relative abundances. Observations coupled with mechanistic models highlight the central role of soil wetness in shaping bacterial rarity. An individual-based model reveals systematic shifts in community composition induced by low carbon inputs in drier soils that deprive common species of exhibiting physiological advantages relative to other species. We find that only a "chosen few" common species shape bacterial communities across biomes; however, their contributions are curtailed in resource-limited environments where a larger number of rare species constitutes the soil microbiome.


Subject(s)
Microbiota , Soil , Bacteria/genetics , RNA, Ribosomal, 16S , Soil Microbiology
4.
Commun Biol ; 4(1): 612, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021246

ABSTRACT

Earthworm activity modifies soil structure and promotes important hydrological ecosystem functions for agricultural systems. Earthworms use their flexible hydroskeleton to burrow and expand biopores. Hence, their activity is constrained by soil hydromechanical conditions that permit deformation at earthworm's maximal hydroskeletal pressure (≈200kPa). A mechanistic biophysical model is developed here to link the biomechanical limits of earthworm burrowing with soil moisture and texture to predict soil conditions that permit bioturbation across biomes. We include additional constraints that exclude earthworm activity such as freezing temperatures, low soil pH, and high sand content to develop the first predictive global map of earthworm habitats in good agreement with observed earthworm occurrence patterns. Earthworm activity is strongly constrained by seasonal dynamics that vary across latitudes largely due to soil hydromechanical status. The mechanistic model delineates the potential for earthworm migration via connectivity of hospitable sites and highlights regions sensitive to climate.


Subject(s)
Animal Distribution , Ecosystem , Oligochaeta/physiology , Soil/chemistry , Water Movements , Agriculture , Animals , Mechanical Phenomena
5.
Front Plant Sci ; 12: 798992, 2021.
Article in English | MEDLINE | ID: mdl-35095970

ABSTRACT

Mucilage is a gelatinous high-molecular-weight substance produced by almost all plants, serving numerous functions for plant and soil. To date, research has mainly focused on hydraulic and physical functions of mucilage in the rhizosphere. Studies on the relevance of mucilage as a microbial habitat are scarce. Extracellular polymeric substances (EPS) are similarly gelatinous high-molecular-weight substances produced by microorganisms. EPS support the establishment of microbial assemblages in soils, mainly through providing a moist environment, a protective barrier, and serving as carbon and nutrient sources. We propose that mucilage shares physical and chemical properties with EPS, functioning similarly as a biofilm matrix covering a large extent of the rhizosphere. Our analyses found no evidence of consistent differences in viscosity and surface tension between EPS and mucilage, these being important physical properties. With regard to chemical composition, polysaccharide, protein, neutral monosaccharide, and uronic acid composition also showed no consistent differences between these biogels. Our analyses and literature review suggest that all major functions known for EPS and required for biofilm formation are also provided by mucilage, offering a protected habitat optimized for nutrient mobilization. Mucilage enables high rhizo-microbial abundance and activity by functioning as carbon and nutrient source. We suggest that the role of mucilage as a biofilm matrix has been underestimated, and should be considered in conceptual models of the rhizosphere.

6.
Nat Commun ; 11(1): 116, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31913270

ABSTRACT

Soil bacterial diversity varies across biomes with potential impacts on soil ecological functioning. Here, we incorporate key factors that affect soil bacterial abundance and diversity across spatial scales into a mechanistic modeling framework considering soil type, carbon inputs and climate towards predicting soil bacterial diversity. The soil aqueous-phase content and connectivity exert strong influence on bacterial diversity for each soil type and rainfall pattern. Biome-specific carbon inputs deduced from net primary productivity provide constraints on soil bacterial abundance independent from diversity. The proposed heuristic model captures observed global trends of bacterial diversity in good agreement with predictions by an individual-based mechanistic model. Bacterial diversity is highest at intermediate water contents where the aqueous phase forms numerous disconnected habitats and soil carrying capacity determines level of occupancy. The framework delineates global soil bacterial diversity hotspots; located mainly in climatic transition zones that are sensitive to potential climate and land use changes.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbon/analysis , Carbon/metabolism , Ecosystem , Soil/chemistry , Water/analysis , Water/metabolism
7.
Sci Rep ; 9(1): 12129, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431661

ABSTRACT

Soil bacterial communities are central to ecosystem functioning and services, yet spatial variations in their composition and diversity across biomes and climatic regions remain largely unknown. We employ multivariate general additive modeling of recent global soil bacterial datasets to elucidate dependencies of bacterial richness on key soil and climatic attributes. Although results support the well-known association between bacterial richness and soil pH, a hierarchy of novel covariates offers surprising new insights. Defining climatic soil water content explains both, the extent and connectivity of aqueous micro-habitats for bacterial diversity and soil pH, thus providing a better causal attribution. Results show that globally rare and abundant soil bacterial phylotypes exhibit different levels of dependency on environmental attributes. Surprisingly, the strong sensitivity of rare bacteria to certain environmental conditions improves their predictability relative to more abundant phylotypes that are often indifferent to variations in environmental drivers.


Subject(s)
Bacteria , Environment , Soil Microbiology , Bacteria/genetics , Biodiversity , Geography , Hydrogen-Ion Concentration , Models, Theoretical , Multivariate Analysis , RNA, Bacterial , RNA, Ribosomal, 16S , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...