Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904496

ABSTRACT

Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used-according to two different trends: dry friction fiber-reinforced hybrid composite clutch facings. In 'normal use' facings, increasing specific wear trend is detected as a function of activation energy according to a second-degree function, while a logarithmic trend line can be fitted to the values of the clutch killer facings, showing that even at low activation energy levels, significant (~3%) wear occurs. The specific wear rate also varies as a function of the radius of the friction facing, with the relative wear values measured on the working friction diameter being higher regardless of the usage trend. In terms of surface roughness variation measured in the radial direction, normal use facings show a varying roughness difference according to a third-degree function, while clutch killer facings follow a second-degree or logarithmic trend depending on the diameter (di or dw). From the statistical analysis of the steady-state, we find three different clutch engagement phase characterizing pv level pin-on-disk tribological test results for the specific wear of the clutch killer and normal use facings, and significantly different trend curves with three different sets of functions were obtained, showing that the wear intensity can be described as a function of the pv value and the friction diameter. In terms of radial direction surface roughness difference, the values of clutch killer and normal use samples can be described by three different sets of function showing the effects of the friction radius and pv.

2.
Polymers (Basel) ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35566926

ABSTRACT

Coefficient of friction values, wear and surface roughness differences are revealed using pin-on-disc test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used, dry friction fiber-reinforced hybrid composite clutch facings. Tests are characterized by surface activation energy and separated into Trend 1, 'clutch killer', and 2, 'moderate', groups from our previous study. The results reveal that acceptable, 0.41-0.58, coefficient of friction values among Trend 1 specimens cannot be reached during high pv tests, though the -0.19--0.11 difference of minimum and maximum pv results disappears when activation energy reaches 179 MJ. The maximum pv friction coefficient can decrease by up to 30% at working diameter due to clutch killer test circumstances, as 179 MJ surface activation energy is applied, while by moderate tests such losses can only be detected close to 2000 MJ energy values among small-sized facings. Besides that, Trend 2 specific wear values are the third of trend 1 results at inner diameter specimens. Compared to reference facing values, specific wear results at working diameter under maximum pv decrease by 47-100%, while increasing specific wear during lifetime can only be detected at the inner diameter of facings enduring clutch killer tests or that are small-sized facings. Among Trend 1 radial and tangential Ra delta results, inner diameter samples provide more decreasing surface roughness data, while by Trend 2 values, the opposite relation is detected. Apart from the effects of activation energy, mileage and driver profile, facing size and friction diameter influence is also revealed.

3.
Polymers (Basel) ; 13(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833195

ABSTRACT

Wear and surface microgeometry aspects of fiber-reinforced hybrid composite dry friction clutch facings are revealed in a novel way: after different, real life automotive tests during their lifetime. This study examines and reveals the tribological response of friction material surfaces to real life application conditions with two different facing diameters and in two directions. Along the increasing activation energy scale, wear values increased according to two different trends, sorting tests into two main groups, namely 'clutch killer' and 'moderate'. Wear results also highlighted the influence of mileage and test conditions, with clutch killer tests also creating considerable wear-more than 0.1 mm-at inner diameters: 1% higher wear was generated by 90% higher mileage; another 1% increment could be caused by insufficient cooling time or test bench-specific conditions. Surface roughness values trends varied accordingly with exceptions revealing effects of facing size, friction diameter and directions and test conditions: small (S) facings produced significantly decreased Rmax roughness, while large (L) and medium (M) size facings had increased roughness values; Rmax results showed the highest deviations among roughness values in radial direction; tests run with trailer and among city conditions resulted in more than 2% thickness loss and a 40-50% roughness decrease.

4.
Materials (Basel) ; 13(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053686

ABSTRACT

Fiber-reinforced hybrid composites are the most commonly used dry-friction materials in the automotive industry. On the other hand, the great variety of components utilized these days in such material systems often requires identification investigations for a complex characterization. The development history of clutch materials was reviewed, highlighting and understanding the milestones and efforts leading to the creation of these materials. Investigations were performed to determine mechanical stiffness matrix parameters and thermal properties of a woven fiber yarn (glass fiber with aromatic polyamide, copper, and poly-acrylic-nitrile (PAN) reinforced friction material, revealing and solving challenges faced during identification efforts. This study grants an effective reference and a novel guidance for material identification methods for similar complex materials, and the results provide input parameters for thermomechanical simulation contact model development, which will cover friction material lifetime effects on dry clutch tribology in a future study.

SELECTION OF CITATIONS
SEARCH DETAIL