Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0356223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37971233

ABSTRACT

IMPORTANCE: Compared with the phyllosphere, bacteria inhabiting bark surfaces are inadequately understood. Based on a preliminary pilot study, our work suggests that microbial populations vary across tree bark surfaces and may differ in relation to surrounding land use. Initial results suggest that stemflow, the water that flows along the bark surface, actively moves bacterial communities across a tree. These preliminary findings underscore the need for further study of niche microbial populations to determine whether there are connections between the biodiversity of microbiomes inhabiting corticular surfaces, land use, and hydrology.


Subject(s)
Plant Bark , Trees , Pilot Projects , Trees/microbiology , Biodiversity , Bacteria/genetics
2.
Astrobiology ; 15(2): 144-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25683088

ABSTRACT

A common goal for astrobiology is to detect organic materials that may indicate the presence of life. However, organic materials alone may not be representative of currently living systems. Thus, it would be valuable to have a method with which to determine the health of living materials. Here, we present progress toward this goal by reporting on the application of laser-induced breakdown spectroscopy (LIBS) to study characteristics of live and dead cells using Escherichia coli (E. coli) strain K12 cells as a model organism since its growth and death in the laboratory are well understood. Our goal is to determine whether LIBS, in its femto- and/or nanosecond forms, could ascertain the state of a living organism. E. coli strain K12 cells were grown, collected, and exposed to one of two types of inactivation treatments: autoclaving and sonication. Cells were also kept alive as a control. We found that LIBS yields key information that allows for the discrimination of live and dead E. coli bacteria based on ionic shifts reflective of cell membrane integrity.


Subject(s)
Escherichia coli/isolation & purification , Spectrum Analysis/methods , Bacteriological Techniques , Calcium/analysis , Exobiology/methods , Lasers , Magnesium/analysis , Microscopy, Atomic Force , Multivariate Analysis , Organic Chemicals/chemistry , Phosphorus/analysis , Potassium/analysis , Sodium/analysis , Sonication , Trace Elements
3.
Geobiology ; 12(3): 250-64, 2014 May.
Article in English | MEDLINE | ID: mdl-24636451

ABSTRACT

Pavilion Lake in British Columbia, Canada, is home to modern-day microbialites that are actively growing at multiple depths within the lake. While microbialite morphology changes with depth and previous isotopic investigations suggested a biological role in the formation of these carbonate structures, little is known about their microbial communities. Microbialite samples acquired through the Pavilion Lake Research Project (PLRP) were first investigated for phototrophic populations using Cyanobacteria-specific primers and 16S rRNA gene cloning. These data were expounded on by high-throughput tagged sequencing analyses of the general bacteria population. These molecular analyses show that the microbial communities of Pavilion Lake microbialites are diverse compared to non-lithifying microbial mats also found in the lake. Phototrophs and heterotrophs were detected, including species from the recently described Chloroacidobacteria genus, a photoheterotroph that has not been previously observed in microbialite systems. Phototrophs were shown as the most influential contributors to community differences above and below 25 meters, and corresponding shifts in heterotrophic populations were observed at this interface as well. The isotopic composition of carbonate also mirrored this shift in community states. Comparisons to previous studies indicated this population shift may be a consequence of changes in lake chemistry at this depth. Microbial community composition did not correlate with changing microbialite morphology with depth, suggesting something other than community changes may be a key to observed variations in microbialite structure.


Subject(s)
Archaea/physiology , Bacterial Physiological Phenomena , Biota , Geologic Sediments/microbiology , Lakes/microbiology , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , British Columbia , Carbonates/metabolism , DNA Barcoding, Taxonomic , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
4.
Geobiology ; 12(2): 119-32, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24382125

ABSTRACT

Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat-forming micro-organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria-dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.


Subject(s)
Beggiatoa/genetics , Cyanobacteria/genetics , Gene Transfer, Horizontal , Genome, Bacterial , Geologic Sediments/microbiology , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Analysis, DNA
5.
Virology ; 289(2): 388-99, 2001 Oct 25.
Article in English | MEDLINE | ID: mdl-11689060

ABSTRACT

The subgroup C human adenovirus L4 33-kDa protein is a nuclear phosphoprotein that plays a direct, but dispensable, role in virion assembly. The r-strand open reading frame (ORF) for this protein lies opposite to the 5' end of the l-strand E2 early (E2E) transcription units. To facilitate studies of regulation of E2E transcription, we wished to construct a mutant virus in which the 33-kDa ORF was truncated to serve as a background into which specific E2E mutations could be introduced without also altering the 33-kDa protein. We constructed viral DNA (vDNA) containing within the 33-kDa ORF two tandem, premature stop codons that should prevent translation of the C-terminal 47 amino acids of the protein (Delta47). We report here the unanticipated lethality of such truncation of the L4 33-kDa protein. Viral DNA harboring the Delta47 mutations did not produce infectious virus when transfected into cultured cells. In contrast, infectious virus was recovered upon transfection of revertant vDNA, indicating that the Delta47 mutations were responsible for the observed phenotype. The Delta47 mutations did not affect E2E transcription or production of the E2 DNA-binding protein. Transfected Delta47 vDNA was replicated and directed the production of early and late viral proteins, including hexon protein in the trimer conformation. However, no virus particles of any kind were produced. We propose that truncation of the adenovirus 33-kDa protein results in a lethal, late block in the infectious cycle during the assembly of progeny virions and discuss the implications of this phenotype for the mechanism of virion assembly.


Subject(s)
Adenoviruses, Human/physiology , Viral Nonstructural Proteins/physiology , Cell Line , Codon, Terminator , HeLa Cells , Humans , Mutation , Open Reading Frames , Transfection , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...