Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 592: 120068, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33188894

ABSTRACT

In this study, physically cross-linked hydrogels were developed by freezing-thawing method while different concentrations of honey were included into the hydrogels for accelerated wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin with the ratio of 2:1:1 (v/v), respectively. Further, the effect of honey concentrations on antibacterial properties, and cell behavior was investigated. In vivo studies, including wound healing mechanism using rat model and histological analysis of section tissue samples were performed. The results illustrated that the incorporation of honey in hydrogels increased the ultimate strain of hydrogels approximately two times, while reduced the ultimate tensile strength and elastic modulus of hydrogels. Moreover, the antibacterial activities of samples were increased by increasing the concentration of honey. Regarding MTT assay, as the concentration of honey increased, the cell viability of hydrogels was enhanced until an optimal amount of honey. Further, the integration of honey into the hydrogel matrix results in the maintenance of a well-structured layer of epidermis containing mature collagen and accelerates the rate of wound healing. The 3D Chitosan/PVA/Gelatin hydrogel containing honey with appropriate mechanical, antibacterial activity, and biocompatibility could be a promising approach for wound healing.


Subject(s)
Chitosan , Honey , Animals , Gelatin , Hydrogels , Polyvinyl Alcohol , Rats , Wound Healing
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109688, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349405

ABSTRACT

In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 µm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was composed of two levels of pores in the order of 500-600 µm and 10-50 µm. The prepared SF-BG composite scaffolds utilized by nano and micro particles possessed mechanical properties with a compressive strength of 0.94 and 1.2 MPa, respectively, in dry conditions. In a wet condition, the hierarchically porous scaffolds did not exhibit any fluctuation after compression load cell and were incredibly flexible, with excellent mechanical stability. The SF-BG composite scaffold with nanoparticles presented a significant 50% increase in attachment of human bone marrow stem cells in comparison with SF and SF-BG scaffold with microparticles. Moreover, SF-BG scaffolds promoted alkaline phosphatase activity as compared to SF scaffolds without BG particles on day 14. In brief, the 3D porous silk fibroin-based composites containing BG nanoparticles with excellent mechanical properties are promising scaffolds for bone tissue regeneration in high load-bearing applications.


Subject(s)
Bone Marrow Cells/metabolism , Fibroins/chemistry , Glass/chemistry , Nanoparticles/chemistry , Printing, Three-Dimensional , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Bone Marrow Cells/cytology , Compressive Strength , Humans , Particle Size , Porosity , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL