Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294896

ABSTRACT

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Subject(s)
Air Pollutants , Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Environmental Monitoring/methods , Hexachlorobenzene/analysis , Fresh Water , Air Pollutants/analysis , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis
2.
Environ Sci Ecotechnol ; 13: 100209, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36437890

ABSTRACT

Halomethoxybenzenes (HMBs) are a group of compounds with natural and anthropogenic origins. Here we extend a 2002-2015 survey of bromoanisoles (BAs) in the air and precipitation at Råö on the Swedish west coast and Pallas in Subarctic Finland. New BAs data are reported for 2018 and 2019 and chlorinated HMBs are included for these and some previous years: drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), and pentachloroanisole (PeCA). The order of abundance of HMBs at Råö was ΣBAs > DAME > TeCV > PeCA, whereas at Pallas the order of abundance was DAME > ΣBAs > TeCA > PeCA. The lower abundance of BAs at Pallas reflects its inland location, away from direct marine influence. Clausius-Clapeyron (CC) plots of log partial pressure (Pair)/Pa versus 1/T suggested distant transport at both sites for PeCA and local exchange for DAME and TeCV. BAs were dominated by distant transport at Pallas and by both local and distant sources at Råö. Relationships between air and precipitation concentrations were examined by scavenging ratios, SR = (ng m-3)precip/(ng m-3)air. SRs were higher at Pallas than Råö due to greater Henry's law partitioning of gaseous compounds into precipitation at colder temperatures. DAME is produced by terrestrial fungi. We screened 19 fungal species from Swedish forests and found seven of them contained 0.01-3.8 mg DAME per kg fresh weight. We suggest that the volatilization of DAME from fungi and forest litter containing fungal mycelia may contribute to atmospheric levels at both sites.

3.
Environ Sci Process Impacts ; 24(10): 1577-1615, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-35244108

ABSTRACT

Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.


Subject(s)
Biological Products , Environmental Pollutants , Humans , Climate Change , Persistent Organic Pollutants , Ecosystem , Environmental Pollutants/analysis , Microplastics , Plastics , Arctic Regions
4.
Environ Sci Technol ; 55(18): 12302-12316, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34459590

ABSTRACT

Accurate values of physicochemical properties are essential for screening semivolatile organic compounds for human and environmental hazard and risk. In silico approaches for estimation are widely used, but the accuracy of these and measured values can be difficult to ascertain. Final adjusted values (FAVs) harmonize literature-reported measurements to ensure consistency and minimize uncertainty. We propose a workflow, including a novel Bayesian approach, for estimating FAVs that combines measurements using direct and indirect methods and in silico values. The workflow was applied to 74 compounds across nine classes to generate recommended FAVs (FAVRs). Estimates generated by in silico methods (OPERA, COSMOtherm, EPI Suite, SPARC, and polyparameter linear free energy relationships (pp-LFER) models) differed by orders of magnitude for some properties and compounds and performed systematically worse for larger, more polar compounds. COSMOtherm and OPERA generally performed well with low bias although no single in silico method performed best across all compound classes and properties. Indirect measurement methods produced highly accurate and precise estimates compared with direct measurement methods. Our Bayesian method harmonized measured and in silico estimated physicochemical properties without introducing observable biases. We thus recommend use of the FAVRs presented here and that the proposed Bayesian workflow be used to generate FAVRs for SVOCs beyond those in this study.


Subject(s)
Environmental Monitoring , Organic Chemicals , Bayes Theorem , Humans
5.
Environ Sci Technol ; 55(14): 9518-9526, 2021 07 20.
Article in English | MEDLINE | ID: mdl-33826304

ABSTRACT

The time trend of α- and γ-hexachlorocyclohexane (HCH) isomers in Lake Superior water was followed from 1986 to 2016, the longest record for any persistent organic pollutant (POP) in Great Lakes water. Dissipation of α-HCH and γ-HCHs was first order, with halving times (t1/2) of 5.7 and 8.5 y, respectively. Loss rates were not significantly different starting a decade later (1996-2016). Concentrations of ß-HCH were followed from 1996-2016 and dissipated more slowly (t1/2 = 16 y). In 1986, the lake contained an estimated 98.8 tonnes of α-HCH and 13.2 tonnes of γ-HCH; by 2016, only 2.7% and 7.9% of 1986 quantities remained. Halving times of both isomers in water were longer than those reported in air, and for γ-HCH, they were longer in water than those reported in lake trout. Microbial degradation was evident by enantioselective depletion of (+)α-HCH, which increased from 1996 to 2011. Volatilization was the main removal process for both isomers, followed by degradation (hydrolytic and microbial) and outflow through the St. Mary's River. Sedimentation was minor. Major uncertainties in quantifying removal processes were in the two-film model for predicting volatilization and in microbial degradation rates. The study highlights the value of long-term monitoring of chemicals in water to interpreting removal processes and trends in biota.


Subject(s)
Pesticides , Water Pollutants, Chemical , Hexachlorocyclohexane/analysis , Lakes , Pesticides/analysis , Water , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 54(11): 6468-6485, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32364720

ABSTRACT

Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.


Subject(s)
Biological Products , Climate Change , Animals
7.
Environ Sci Process Impacts ; 21(5): 881-892, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31032511

ABSTRACT

Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.


Subject(s)
Anisoles/analysis , Environmental Monitoring/methods , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Brominated/analysis , Seaweed/chemistry , Water Pollutants, Chemical/analysis , Animals , Gas Chromatography-Mass Spectrometry , Halogenation , Humans , Norway , Oceans and Seas , Sweden
9.
Environ Toxicol Chem ; 37(12): 3011-3017, 2018 12.
Article in English | MEDLINE | ID: mdl-30183099

ABSTRACT

We report concentrations of polychlorinated biphenyls, polybrominated diphenyl ethers, novel flame retardants, and naturally occurring bromoanisoles in water and filter-feeding black fly (Simuliidae) larvae in 3 tundra streams in northern Sweden. The results demonstrate that black fly larvae accumulate a wide range of organic contaminants and can be used as bioindicators of water pollution in Arctic streams. Environ Toxicol Chem 2018;37:3011-3017. © 2018 SETAC.


Subject(s)
Environmental Monitoring , Industrial Waste/analysis , Rivers/chemistry , Simuliidae/metabolism , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Larva/metabolism , Polychlorinated Biphenyls/analysis , Principal Component Analysis , Sweden , Tundra
10.
Chemosphere ; 192: 267-271, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29107878

ABSTRACT

Frontal chromatography theory is applied to describe movement of gaseous semivolatile organic compounds (SVOCs) through a column of polyurethane foam (PUF). Collected mass fractions (FC) are predicted for sample volume/breakthrough volume ratios (τ = VS/VB) up to 6.0 and PUF bed theoretical plate numbers (N) from 2 to 16. The predictions assume constant air concentrations and temperatures. Extension of the calculations is done to relate the collection efficiency of a 2-PUF train (FC1+2) to the PUF 2/PUF 1 ratio. FC1+2 exceeds 0.9 for PUF 2/PUF 1 ≤ 0.5 and lengths of PUF commonly used in air samplers. As the PUF 2/PUF 1 ratio approaches unity, confidence in these predictions is limited by the analytical ability to distinguish residues on the two PUFs. Field data should not be arbitrarily discarded because some analytes broke through to the backup PUF trap. The fractional collection efficiencies can be used to estimate air concentrations from quantities retained on the PUF trap when sampling is not quantitative.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Gases/analysis , Polyurethanes/chemistry , Volatile Organic Compounds/analysis , Chromatography
11.
Environ Sci Technol ; 51(19): 10974-10982, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28885011

ABSTRACT

Bromoanisoles (BAs) arise from O-methylation of bromophenols, produced by marine algae and invertebrates. BAs undergo sea-air exchange and are transported over the oceans. Here we report 2,4-DiBA and 2,4,6-TriBA in air and deposition on the Swedish west coast (Råö) and the interior of arctic Finland (Pallas). Results are discussed in perspective with previous measurements in the northern Baltic region in 2011-2013. BAs in air decreased from south to north in the order Råö > northern Baltic > Pallas. Geometric mean concentrations at Pallas increased significantly (p < 0.05) between 2002 and 2015 for 2,4-DiBA but not for 2,4,6-TriBA. The logarithm of BA partial pressures correlated significantly to reciprocal air temperature at the coastal station Råö and over the Baltic, but only weakly (2,4-DiBA) or not significantly (2,4,6-TriBA) at inland Pallas. Deposition fluxes of BAs were similar at both sites despite lower air concentrations at Pallas, due to greater precipitation scavenging at lower temperatures. Proportions of the two BAs in air and deposition were related to Henry's law partitioning and source regions. Precipitation concentrations were 10-40% of those in surface water of Bothnian Bay, northern Baltic Sea. BAs deposited in the bay catchment likely enter rivers and provide an unexpected source to northern estuaries. BAs may be precursors to higher molecular weight compounds identified by others in Swedish inland lakes.


Subject(s)
Anisoles/analysis , Environmental Monitoring/methods , Rivers/chemistry , Anisoles/chemistry , Arctic Regions , Baltic States , Finland , Oceans and Seas , Sweden
12.
Environ Pollut ; 225: 381-389, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28336095

ABSTRACT

Polyurethane foam (PUF) disk passive samplers were deployed at one inland and two island locations in the Bothnian Bay region of the northern Baltic Sea. Uptake was linear over 81-147 d and a temperature range of -2.6 to 14.2 °C for organochlorine pesticides (OCPs) and current-use pesticides (CUPs) having log KOA ≥9 at ambient temperatures. Partial saturation of the PUF disks occurred for the more volatile OCPs hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB), and for bromoanisoles (BAs), which are products of bromophenols released by natural and anthropogenic sources. Correction for nonlinear uptake of these was made using experimentally measured PUF-air partition coefficients. Passive-derived air concentrations of pesticides were uniform over the bay and agreed within a factor of 2 or better with levels determined by active (pumped) sampling at one of the island stations. Levels of OCPs were similar to those reported at background sites in the European and Canadian Arctic and at monitoring stations in the central Baltic and southern Scandinavia, indicating long-range transport. The insecticide chlorpyrifos was 10 times lower at bay stations than in the Canadian Arctic. Insight to sources and processes was gained by examining compound profiles. Fractions Falpha = α-HCH/(α-HCH + Î³-HCH) and FTC = trans-chlordane/(trans-chlordane + cis-chlordane) at bay stations were higher than in the Norwegian and Finnish Arctic and similar to those at the southern monitoring stations. Volatilization of chlordanes from Baltic seawater may also modify FTC. Higher FTriBA = 2,4,6-TriBA/(2,4,6-TriBA + 2,4-DiBA) distinguished local volatilization from the Baltic Sea versus lower FTriBA found at the inland site and reported in air on the Norwegian coast, suggesting westerly transport from the Atlantic across Norway and Sweden.


Subject(s)
Air Pollutants/analysis , Anisoles/analysis , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Arctic Regions , Chlordan/analysis , Hexachlorobenzene/analysis , Hexachlorocyclohexane/analysis , Insecticides , North Sea , Norway , Scandinavian and Nordic Countries , Seawater , Sweden
13.
Sci Total Environ ; 580: 1460-1469, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28038873

ABSTRACT

Here, we present the first detailed analysis of processes by which various current use pesticides (CUPs) and legacy organochlorine pesticides (OCPs) are concentrated in melt ponds that form on Arctic sea ice in the summer, when surface snow is melting and ice eventually breaks up. Four current use pesticides (dacthal, chlorpyrifos, trifluralin, and pentachloronitrobenzene) and one legacy organochlorine pesticide (α-hexachlorocyclohexane) were detected in ponds in Resolute Passage, Canadian Arctic, in 2012. Melt-pond concentrations changed over time as a function of gas exchange, precipitation, and dilution with melting sea ice. Observed increases in melt-pond concentrations for all detected pesticides were associated with precipitation events. Dacthal reached the highest concentration of all current use pesticides in ponds (95±71pgL-1), a value exceeding measured concentrations in the under-ice (0m) and 5m seawater by >10 and >16 times, respectively. Drainage of dacthal-enriched pond water to the ocean during ice break-up provides an important ice-mediated annual delivery route, adding ~30% of inventory in the summer Mixed Layer (ML; 10m) in the Resolute Passage, and a concentrating mechanism with potential implications for exposures to organisms such as ice algae, and phytoplankton.

14.
Chemosphere ; 173: 275-287, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28113064

ABSTRACT

The agricultural Mexicali and Yaqui valleys (MV, YV) in northwest Mexico were heavily treated with organochlorine pesticides in the past. Residential soils and agricultural drain sediments were sampled in 2008-2009 and analyzed for DDTs (o,p'- and p,p'- isomers of DDE, DDD and DDT); hexachlorocyclohexanes (α-, ß-, γ- and δ-HCH) and chlordanes (trans-chlordane, cis-chlordane, heptachlor and heptachlor exo-epoxide). Geometric means (GMs) (ng g-1 dry weight) were: MV soils (n = 27) ΣDDT 22, ΣHCH 0.80, ΣCHL 0.88; YV soils (n = 25) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.67; MV sediments (n = 3) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.53; YV sediments (n = 8) ΣDDT 2.6, ΣHCH 0.12, ΣCHL 0.090. GMs were significantly higher (p < 0.05) in MV than YV soils for ΣDDT and ΣHCH, but not for ΣCHL. Comparison to worldwide regulatory guideline values (RGVs) for residential soils showed all compounds below mean or GM RGVs, but above the lowest RGV in some cases. Low p,p'-DDT/(p,p'-DDT + p,p'-DDE) in most soils indicated aged residues. Lack of p,p'-DDT metabolism might account for its dominance in a few soils. HCH isomer profiles suggested aged technical HCH in the YV, and technical HCH + lindane in the MV. Heptachlor dominated the ΣCHL, probably from application of technical heptachlor as well as chlordane. Chiral compounds were nonracemic in soils and sediments and indicated enantioselective microbial degradation of (+)α-HCH, (-)trans-chlordane, (-)cis-chlordane and (+)o,p'-DDT. Depletion of (+)o,p'-DDT in soils may account for similar enantiomer signatures previously reported in air of northwest Mexico.


Subject(s)
Geologic Sediments/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Environmental Monitoring , Geologic Sediments/chemistry , Humans , Hydrocarbons, Chlorinated/chemistry , Mexico , Pesticides/chemistry , Residence Characteristics , Soil Pollutants/chemistry
15.
Mar Pollut Bull ; 112(1-2): 58-64, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27575397

ABSTRACT

Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.


Subject(s)
Air Pollutants/analysis , Anisoles/analysis , Environmental Monitoring/methods , Halogenated Diphenyl Ethers/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Baltic States , Environmental Monitoring/instrumentation , Gas Chromatography-Mass Spectrometry , Oceans and Seas , Seasons
16.
Chemosphere ; 159: 126-131, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27285381

ABSTRACT

Partition coefficients of gaseous semivolatile organic compounds (SVOCs) between polyurethane foam (PUF) and air (KPA) are needed in the estimation of sampling rates for PUF disk passive air samplers. We determined KPA in field experiments by conducting long-term (24-48 h) air sampling to saturate PUF traps and shorter runs (2-4 h) to measure air concentrations. Sampling events were done at daily mean temperatures ranging from 1.9 to 17.5 °C. Target compounds were hexachlorobenzene (HCB), alpha-hexachlorocyclohexane (α-HCH), 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA). KPA (mL g(-1)) was calculated from quantities on the PUF traps at saturation (ng g(-1)) divided by air concentrations (ng mL(-1)). Enthalpies of PUF-to-air transfer (ΔHPA, kJ mol(-1)) were determined from the slopes of log KPA/mL g(-1) versus 1/T(K) for HCB and the bromoanisoles, KPA of α-HCH was measured only at 14.3 to 17.5 °C and ΔHPA was not determined. Experimental log KPA/mL g(-1) at 15 °C were HCB = 7.37; α-HCH = 8.08; 2,4-DiBA = 7.26 and 2,4,6-TriBA = 7.26. Experimental log KPA/mL g(-1) were compared with predictions based on an octanol-air partition coefficient (log KOA) model (Shoeib and Harner, 2002a) and a polyparameter linear free relationship (pp-LFER) model (Kamprad and Goss, 2007) using different sets of solute parameters. Predicted KP values varied by factors of 3 to over 30, depending on the compound and the model. Such discrepancies provide incentive for experimental measurements of KPA for other SVOCs.


Subject(s)
Air Pollutants/chemistry , Anisoles/chemistry , Hexachlorobenzene/chemistry , Hexachlorocyclohexane/chemistry , Polyurethanes/chemistry , 1-Octanol/chemistry , Environmental Monitoring
17.
Environ Sci Pollut Res Int ; 23(8): 8141-59, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26906006

ABSTRACT

The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.


Subject(s)
Air Pollutants/analysis , Health , Biomass , Energy-Generating Resources , Humans , Particulate Matter/analysis , Smoke , Sweden
18.
Environ Sci Technol ; 49(23): 13844-52, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26196214

ABSTRACT

The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.


Subject(s)
Air Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Chlordan/analysis , Chlordan/chemistry , Endosulfan/analogs & derivatives , Endosulfan/analysis , Endosulfan/chemistry , Environmental Monitoring/methods , Gases/analysis , Gases/chemistry , Hydrocarbons, Chlorinated/chemistry , Oceans and Seas , Pesticides/chemistry , Seawater/analysis , Seawater/chemistry , Soil Pollutants/analysis , Volatilization
19.
Rapid Commun Mass Spectrom ; 29(6): 505-14, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-26160416

ABSTRACT

RATIONALE: The manufacturing and uses of hexachlorocyclohexane (HCH) have resulted in a serious environmental challenge and legacy. This study highlights the ability of compound specific isotope analysis (CSIA) to distinguish among various HCH sources and to support the evaluation of the potential for in situ biodegradation in contaminated groundwater. METHODS: Tests were conducted to verify the absence of significant isotope fractionation during HCH sample pre-concentration including dichloromethane extraction, solvent exchange into iso-octane, and H2SO4 clean-up, and analysis by gas chromatography/combustion-isotope ratio mass spectrometry (GC/C-IRMS). The method was then applied to four Technical Grade (TG) HCH mixtures procured from different sources and to groundwater samples from a contaminated site. RESULTS: The pre-concentration method enabled determination of carbon isotope ratios (δ(13)C values) of HCH isomers with no significant isotopic fractionation. The TG-HCH mixtures had significantly different δ(13)C values. Moreover, for any given TG-HCH, all isomers had δ(13)C values within 1.1‰ of each other - a distinctly uniform fingerprint. At the HCH-contaminated field site, compared with source wells, downgradient wells showed significant (up to 5.1‰) enrichment in (13)C and the δ(13)C values of the HCH isomers were significantly different from each other. CONCLUSIONS: A method was successfully developed for the CSIA of HCH isomers that showed potential for HCH source differentiation and identification of HCH in situ biodegradation. At the HCH-contaminated site, the observed preferential isotopic enrichment of certain isomers relative to others for a given source allows differentiation between biodegraded and non-biodegraded HCH.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hexachlorocyclohexane/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Carbon Isotopes/analysis , Environmental Monitoring , Groundwater/chemistry , Isomerism
20.
Ambio ; 44 Suppl 3: 472-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26022329

ABSTRACT

Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011-2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069-2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air-sea gas exchange and "bulk" (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year(-1) for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year(-1) for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.


Subject(s)
Pesticides/analysis , Climate Change , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...