Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Magn Reson Med ; 90(6): 2388-2399, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37427459

ABSTRACT

PURPOSE: MR guidance is used during therapy to detect and compensate for lesion motion. T2 -weighted MRI often has a superior lesion contrast in comparison to T1 -weighted real-time imaging. The purpose of this work was to design a fast T2 -weighted sequence capable of simultaneously acquiring two orthogonal slices, enabling real-time tracking of lesions. METHODS: To generate a T2 contrast in two orthogonal slices simultaneously, a sequence (Ortho-SFFP-Echo) was designed that samples the T2 -weighted spin echo (S- ) signal in a TR-interleaved acquisition of two slices. Slice selection and phase-encoding directions are swapped between the slices, leading to a unique set of spin-echo signal conditions. To minimize motion-related signal dephasing, additional flow-compensation strategies are implemented. In both the abdominal breathing phantom and in vivo experiments, a time series was acquired using Ortho-SSFP-Echo. The centroid of the target was tracked in postprocessing steps. RESULTS: In the phantom, the lesion could be identified and delineated in the dynamic images. In the volunteer experiments, the kidney was visualized with a T2 contrast at a temporal resolution of 0.45 s under free-breathing conditions. A respiratory belt demonstrated a strong correlation with the time course of the kidney centroid in the head-foot direction. A hypointense saturation band at the slice overlap did not inhibit lesion tracking in the semi-automatic postprocessing steps. CONCLUSION: The Ortho-SFFP-Echo sequence delivers real-time images with a T2 -weighted contrast in two orthogonal slices. The sequence allows for simultaneous acquisition, which could be beneficial for real-time motion tracking in radiotherapy or interventional MRI.

2.
Neuroimage ; 264: 119691, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36375783

ABSTRACT

Many neurological disorders are analyzed and treated with implantable electrodes. Many patients with such electrodes have to undergo MRI examinations - often unrelated to their implant - at the risk of radio-frequency induced heating. The number of electrode contact sites of these implants keeps increasing due to improvements in manufacturing and computational algorithms. Electrode grids with multiple receive channels couple to the RF fields present in MRI, but, due to their proximity, a combination of leads has a coupling response which is not a superposition of the individual leads' response. To investigate the problem of RF-induced heating of coupled multi-lead implants, temperature mapping was performed on a set of intra-cranial electroencephalogram (icEEG) electrode grid prototypes with increasing number of contact sites (1-16). Additionally, electric field measurements were used to investigate the radio-frequency heating characteristics of the implants in different media combinations, simulating the device being partially immersed inside the patient. MR measurements show RF-induced heating up to 19.6 K for the single electrode, reducing monotonically with larger number of contact sites to a minimum of 0.9 K for the largest grid. The SAR calculated from temperature measurements agrees well with electric field mapping: The same trend is visible for different insertion lengths, however, the energy dissipated by the whole implant varies with the grid size and insertion length. Thus, in the tested circumstances, a larger electrode number either reduced or had a similar risk of RF induced heating, indicating, that the size of electrode grids is a design parameter, which can be used to change an implants RF response and in turn to reduce the risk of RF induced heating and improve the safety of patient with neuro-implants undergoing MRI examinations.


Subject(s)
Hot Temperature , Radio Waves , Humans , Radio Waves/adverse effects , Electroencephalography , Electrodes, Implanted/adverse effects , Magnetic Resonance Imaging/adverse effects , Phantoms, Imaging
3.
Radiat Oncol ; 17(1): 65, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35366918

ABSTRACT

Automatic prostate tumor segmentation is often unable to identify the lesion even if multi-parametric MRI data is used as input, and the segmentation output is difficult to verify due to the lack of clinically established ground truth images. In this work we use an explainable deep learning model to interpret the predictions of a convolutional neural network (CNN) for prostate tumor segmentation. The CNN uses a U-Net architecture which was trained on multi-parametric MRI data from 122 patients to automatically segment the prostate gland and prostate tumor lesions. In addition, co-registered ground truth data from whole mount histopathology images were available in 15 patients that were used as a test set during CNN testing. To be able to interpret the segmentation results of the CNN, heat maps were generated using the Gradient Weighted Class Activation Map (Grad-CAM) method. The CNN achieved a mean Dice Sorensen Coefficient 0.62 and 0.31 for the prostate gland and the tumor lesions -with the radiologist drawn ground truth and 0.32 with whole-mount histology ground truth for tumor lesions. Dice Sorensen Coefficient between CNN predictions and manual segmentations from MRI and histology data were not significantly different. In the prostate the Grad-CAM heat maps could differentiate between tumor and healthy prostate tissue, which indicates that the image information in the tumor was essential for the CNN segmentation.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging/methods , Male , Neural Networks, Computer , Prostatic Neoplasms/diagnostic imaging
4.
Phys Med ; 97: 59-65, 2022 May.
Article in English | MEDLINE | ID: mdl-35413606

ABSTRACT

BACKGROUND: MRI is a frequently used tool in radiation therapy planning. For MR-based tumor segmentation, diffusion weighted imaging plays a major role, which can fail due to excessive image artifacts for head and neck cancer imaging. Here, an easy-to-use setup is presented for imaging of head and neck cancer patients in a radiotherapy thermoplastic fixation mask. METHODS: In a prospective head and neck cancer study, MRI data of 29 patients has been acquired at 3 different time points during radiation treatment. The data was analyzed with respect to Nyquist ghosting artifacts in the diffusion images in conventional single shot and readout segmented EPI sequences. For 9 patients, an improved setup with water bags for B0 homogenization was used, and the impact on artifact frequency was analyzed. Additionally, volunteer measurements with B0 fieldmaps are presented. RESULTS: The placement of water bags to the sides of the head during MRI measurements significantly reduces artefacts in diffusion MRI. The number of artifact-free images in readout segmented EPI increased from 74% to 95% of the cases. Volunteer measurements showed a significant increase in B0 homogeneity across slices (head foot direction) as well as within each slice. CONCLUSIONS: The placement of water bags for B0 homogenization is easy to implement, cost-efficient and does not impact patient comfort. Therefore, if very sophisticated soft- or hardware solutions are not present at a given site, or cannot be implemented due to restrictions from the thermoplastic mask, this is an excellent alternative to reduce artifacts in diffusion weighted imaging.


Subject(s)
Echo-Planar Imaging , Head and Neck Neoplasms , Artifacts , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Prospective Studies , Water
5.
In Vivo ; 34(6): 3473-3481, 2020.
Article in English | MEDLINE | ID: mdl-33144456

ABSTRACT

BACKGROUND/AIM: We examined the prognostic value of intraprostatic gross tumour volume (GTV) as measured by multiparametric MRI (mpMRI) in patients with prostate cancer following (primary) external beam radiation therapy (EBRT). PATIENTS AND METHODS: In a retrospective monocentric study, we analysed patients with prostate cancer (PCa) after EBRT. GTV was delineated in pre-treatment mpMRI (GTV-MRI) using T2-weighted images. Cox-regression analyses were performed considering biochemical failure recurrence-free survival (BRFS) as outcome variable. RESULTS: Among 131 patients, after a median follow-up of 57 months, biochemical failure occurred in 27 (21%). GTV-MRI was not correlated with % of positive biopsy cores, Gleason score and initial PSA (all r<0.2) and only moderately correlated with cT stage (r=0.32). In univariate analysis, cT stage, Gleason score and GTV-MRI were higher in subjects with shorter BRFS (p<0.05). GTV-MRI remained a significant predictor for BRFS in multivariate analyses, independent of Gleason score and cT stage. CONCLUSION: GTV, defined using mpMRI, provides incremental prognostic value for BRFS, independent of established risk factors. This supports the implementation of imaging-based GTV for risk-stratification, although further validation is needed.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Male , Neoplasm Grading , Neoplasm Staging , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Retrospective Studies , Tumor Burden
6.
Radiat Oncol ; 15(1): 181, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32727525

ABSTRACT

BACKGROUND: Automatic tumor segmentation based on Convolutional Neural Networks (CNNs) has shown to be a valuable tool in treatment planning and clinical decision making. We investigate the influence of 7 MRI input channels of a CNN with respect to the segmentation performance of head&neck cancer. METHODS: Head&neck cancer patients underwent multi-parametric MRI including T2w, pre- and post-contrast T1w, T2*, perfusion (ktrans, ve) and diffusion (ADC) measurements at 3 time points before and during radiochemotherapy. The 7 different MRI contrasts (input channels) and manually defined gross tumor volumes (primary tumor and lymph node metastases) were used to train CNNs for lesion segmentation. A reference CNN with all input channels was compared to individually trained CNNs where one of the input channels was left out to identify which MRI contrast contributes the most to the tumor segmentation task. A statistical analysis was employed to account for random fluctuations in the segmentation performance. RESULTS: The CNN segmentation performance scored up to a Dice similarity coefficient (DSC) of 0.65. The network trained without T2* data generally yielded the worst results, with ΔDSCGTV-T = 5.7% for primary tumor and ΔDSCGTV-Ln = 5.8% for lymph node metastases compared to the network containing all input channels. Overall, the ADC input channel showed the least impact on segmentation performance, with ΔDSCGTV-T = 2.4% for primary tumor and ΔDSCGTV-Ln = 2.2% respectively. CONCLUSIONS: We developed a method to reduce overall scan times in MRI protocols by prioritizing those sequences that add most unique information for the task of automatic tumor segmentation. The optimized CNNs could be used to aid in the definition of the GTVs in radiotherapy planning, and the faster imaging protocols will reduce patient scan times which can increase patient compliance. TRIAL REGISTRATION: The trial was registered retrospectively at the German Register for Clinical Studies (DRKS) under register number DRKS00003830 on August 20th, 2015.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Multiparametric Magnetic Resonance Imaging/methods , Neural Networks, Computer , Head and Neck Neoplasms/pathology , Humans , Radiotherapy Planning, Computer-Assisted
7.
Radiother Oncol ; 150: 128-135, 2020 09.
Article in English | MEDLINE | ID: mdl-32544609

ABSTRACT

BACKGROUND AND PURPOSE: Hypoxia is an essential metabolic marker that determines chemo- and radiation resistance in head-and-neck squamous cell carcinoma (HNSCC) patients. Our exploratory analysis aimed to identify multiparametric MRI (mpMRI) parameters linked to hypoxia that might be used as surrogate for [18F]FMISO-PET in diagnosis and chemoradiation treatment (CRT) of HNSCC. MATERIALS AND METHODS: 21 patients undergoing definitive CRT for HNSCC were prospectively imaged with serial [18F]FMISO-PET and 3 Tesla mpMRI for T1- and T2-weighted and dynamic contrast-enhanced perfusion and diffusion-weighted measurements (ktrans, ve, kep, ADC) in weeks 0, 2 and 5 and FDG-PET in week 0. [18F]FMISO-PET-derived hypoxic subvolumes (HSV) and complementary non-hypoxic subvolumes (nonHSV) were created for tumor and lymph nodes and projected on the mpMRI scans after PET/MRI co-registration. MpMRI and [18F]FMISO-PET parameters within HSVs and nonHSVs were statistically compared. RESULTS: FMISO-PET-based HSVs of the primary tumors on MRI were characterized by lower ADC at all time points (p = 0.012 at baseline; p = 0.015 in week 2) and reduced interstitial space volume fraction ve and perfusion ktrans at baseline (p = 0.006, p = 0.047) compared to nonHSVs. Hypoxic lymph nodes were characterized by significantly lower ADC values at baseline (p = 0.039), but not at later time points and a reduction in ktrans-based perfusion at week 2 (p = 0.018). CONCLUSION: MpMRI parameters differ significantly between hypoxic and non-hypoxic tumor regions, defined on FMISO-PET/CT as gold standard and might represent surrogate markers for tumor hypoxia. These findings suggest that mpMRI may be useful in the future as a surrogate modality for hypoxia imaging in order to personalize CRT.


Subject(s)
Head and Neck Neoplasms , Multiparametric Magnetic Resonance Imaging , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Humans , Hypoxia , Misonidazole/analogs & derivatives , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals
8.
Tomography ; 5(3): 292-299, 2019 09.
Article in English | MEDLINE | ID: mdl-31572790

ABSTRACT

Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks (CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the difference in segmentation performance of geometrically distorted and corrected diffusion-weighted data using data of patients with head and neck tumors; 18 patients with head and neck tumors underwent multiparametric magnetic resonance imaging, including T2w, T1w, T2*, perfusion (ktrans), and apparent diffusion coefficient (ADC) measurements. Owing to strong geometrical distortions in diffusion-weighted echo planar imaging in the head and neck region, ADC data were additionally distortion corrected. To investigate the influence of geometrical correction, first 14 CNNs were trained on data with geometrically corrected ADC and another 14 CNNs were trained using data without the correction on different samples of 13 patients for training and 4 patients for validation each. The different sets were each trained from scratch using randomly initialized weights, but the training data distributions were pairwise equal for corrected and uncorrected data. Segmentation performance was evaluated on the remaining 1 test-patient for each of the 14 sets. The CNN segmentation performance scored an average Dice coefficient of 0.40 ± 0.18 for data including distortion-corrected ADC and 0.37 ± 0.21 for uncorrected data. Paired t test revealed that the performance was not significantly different (P = .313). Thus, geometrical distortion on diffusion-weighted imaging data in patients with head and neck tumor does not significantly impair CNN segmentation performance in use.


Subject(s)
Carcinoma, Squamous Cell/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Multiparametric Magnetic Resonance Imaging/methods , Automation , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Female , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Humans , Male , Neural Networks, Computer , Prospective Studies , Radiotherapy, Adjuvant , Sensitivity and Specificity
9.
Radiat Oncol ; 13(1): 183, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30241555

ABSTRACT

Following the publication of this article [1], the authors noticed that figures 2, 3, 4 and 5 were in the incorrect order and thus had incorrect captions.

10.
Radiat Oncol ; 13(1): 159, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157883

ABSTRACT

BACKGROUND: To assess the effect of radiochemotherapy (RCT) on proposed tumour hypoxia marker transverse relaxation time (T2*) and to analyse the relation between T2* and 18F-misonidazole PET/CT (FMISO-PET) and 18F-fluorodeoxyglucose PET/CT (FDG-PET). METHODS: Ten patients undergoing definitive RCT for squamous cell head-and-neck cancer (HNSCC) received repeat FMISO- and 3 Tesla T2*-weighted MRI at weeks 0, 2 and 5 during treatment and FDG-PET at baseline. Gross tumour volumes (GTV) of tumour (T), lymph nodes (LN) and hypoxic subvolumes (HSV, based on FMISO-PET) and complementary non-hypoxic subvolumes (nonHSV) were generated. Mean values for T2* and SUVmean FDG were determined. RESULTS: During RCT, marked reduction of tumour hypoxia on FMISO-PET was observed (T, LN), while mean T2* did not change significantly. At baseline, mean T2* values within HSV-T (15 ± 5 ms) were smaller compared to nonHSV-T (18 ± 3 ms; p = 0.051), whereas FDG SUVmean (12 ± 6) was significantly higher for HSV-T (12 ± 6) than for nonHSV-T (6 ± 3; p = 0.026) and higher for HSV-LN (10 ± 4) than for nonHSV-LN (5 ± 2; p ≤ 0.011). Correlation between FMISO PET and FDG PET was higher than between FMSIO PET and T2* (R2 for GTV-T (FMISO/FDG) = 0.81, R2 for GTV-T (FMISO/T2*) = 0.32). CONCLUSIONS: Marked reduction of tumour hypoxia between week 0, 2 and 5 found on FMISO PET was not accompanied by a significant T2*change within GTVs over time. These results suggest a relation between tumour oxygenation status and T2* at baseline, but no simple correlation over time. Therefore, caution is warranted when using T2* as a substitute for FMISO-PET to monitor tumour hypoxia during RCT in HNSCC patients. TRIAL REGISTRATION: DRKS, DRKS00003830 . Registered 23.04.2012.


Subject(s)
Chemoradiotherapy , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Positron Emission Tomography Computed Tomography/methods , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/therapy , Tumor Hypoxia , Dose Fractionation, Radiation , Fluorodeoxyglucose F18 , Head and Neck Neoplasms/metabolism , Humans , Magnetic Resonance Imaging/methods , Misonidazole/analogs & derivatives , Oxygen Consumption , Prospective Studies , Radiation-Sensitizing Agents , Radiopharmaceuticals , Squamous Cell Carcinoma of Head and Neck/metabolism , Time Factors , Tumor Burden , Tumor Hypoxia/drug effects , Tumor Hypoxia/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...