Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630529

ABSTRACT

The grapevine fanleaf virus (GFLV), responsible for fanleaf degeneration, is spread in vineyards by the soil nematode Xiphinema index. Nematicide molecules were used to limit the spread of the disease until they were banned due to negative environmental impacts. Therefore, there is a growing interest in alternative methods, including plant-derived products with antagonistic effects to X. index. In this work, we evaluated the nematicidal potential of the aerial parts and roots of four Fabaceae: sainfoin (Onobrychis viciifolia), birdsfoot trefoil (Lotus corniculatus), sweet clover (Melilotus albus), and red clover (Trifolium pratense), as well as that of sainfoin-based commercial pellets. For all tested plants, either aerial or root parts, or both of them, exhibited a nematicidal effect on X. index in vitro, pellets being as effective as freshly harvested plants. Comparative metabolomic analyses did not reveal molecules or molecule families specifically associated with antagonistic properties toward X. index, suggesting that the nematicidal effect is the result of a combination of different molecules rather than associated with a single compound. Finally, scanning electron microscope observations did not reveal the visible impact of O. viciifolia extract on X. index cuticle, suggesting that alteration of the cuticle may not be the primary cause of their nematicidal effect.


Subject(s)
Lotus , Nematoda , Animals , Antinematodal Agents/pharmacology , Humans , Plant Diseases , Soil
2.
New Phytol ; 229(2): 1133-1146, 2021 01.
Article in English | MEDLINE | ID: mdl-32896925

ABSTRACT

Grapevine trunk diseases have devastating consequences on vineyards worldwide. European wild grapevines (Vitis vinifera subs. sylvestris) from the last viable population in Germany along the Rhine river showed variable degrees of resistance against Neofusicoccum parvum (strain Bt-67), a fungus associated with Botryosphaeriaceae-related dieback. Representative genotypes from different subclades of this population were mapped with respect to their ability to induce wood necrosis, as well as their defence responses in a controlled inoculation system. The difference in colonization patterns could be confirmed by cryo-scanning electron microscopy, while there was no relationship between vessel diameter and infection success. Resistant lines accumulated more stilbenes, that were in addition significantly partitioned to nonglycosylated viniferin trimers. By contrast, the susceptible genotypes accumulated less stilbenes with a significantly higher proportion of glycosylated piceid. We suggest a model in which in the resistant genotypes phenylpropanoid metabolism is channelled rapidly and specifically to the bioactive stilbenes. Our study specifies a resistant chemotype against grapevines trunk diseases and paves a way to breed for resistance against grapevine Botryosphaeriaceae-related dieback.


Subject(s)
Stilbenes , Vitis , Ascomycota , Germany , Plant Breeding , Plant Diseases , Stilbenes/pharmacology , Vitis/genetics
3.
J Mater Chem B ; 1(3): 368-378, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-32260761

ABSTRACT

A combination of poly([R]-3-hydroxy-10-undecenoate) (PHUE), a biodegradable polymer from the group of polyhydroxyalkanoates (PHAs), and lipids of different head groups was used to support the growth of calcium phosphate, the main component of mammalian bones. Crystallization took place under two-dimensional films (Langmuir monolayers). The addition of a negatively charged lipid, 1,2-dioleoyl-sn-glycero-3-phospho-l-serine, to a PHUE film led to the formation of lipid domains (rich in negative charge), and resulted in excellent mineralization control: crystals with uniform size and morphology were formed. The results show that carefully optimized combinations of materials can lead to better control of calcium phosphate crystallization compared to one-component organic scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...