Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 857(Pt 1): 159377, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36240932

ABSTRACT

Levels in wastewater of human stress biomarkers, such as cortisone (E), cortisol (F), tetrahydrocortisone (THE), and tetrahydrocortisol (THF) may serve as indicators of population wellbeing and overall health. This study examined the stability of these biosignature compounds in wastewater to inform on their applicability for use in wastewater-based epidemiology (WBE). Wastewater from two undisclosed U.S. municipalities were fortified with the above four biomarkers of stress to a concentration of 10 ppb, and their decay was studied at three temperatures (15, 25, and 35 °C) over 24 h in oxic and anoxic conditions. Samples were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) in conjunction with the isotope dilution method for absolute quantitation. Results demonstrated short-term persistence (24 h) of biomarkers at low temperatures (15 °C), and accelerating kinetics of decay that were positively correlated with temperature increases. Among the four biomarkers evaluated, the tetrahydro derivatives were the most long-lived sewage-borne stress biomarkers and these are recommended as prime analytical targets for use in WBE when tracking population stress. Statistical analyses using a non-parametric Wilcoxon test further revealed no significant differences (p > 0.05) between oxic and anoxic decay rates for all stress biomarkers in wastewater from all study locations, regardless of the prevailing temperature regime. This negative finding is worthy of reporting because it suggests the feasibility of straightforward modeling of stress hormone decay, irrespective of whether the sewerage system monitored contains fully filled, pressurized pipes or partially filled gravity flow pipes, whose filling level, and with it its redox conditions, are known to fluctuate over time with water use and storm events.


Subject(s)
Tandem Mass Spectrometry , Wastewater , Humans , Biomarkers , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Tetrahydrocortisone , Wastewater/analysis
2.
Aging Cell ; 16(2): 320-328, 2017 04.
Article in English | MEDLINE | ID: mdl-28000382

ABSTRACT

Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.


Subject(s)
Aging/physiology , DNA Breaks, Double-Stranded , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Germ Cells/metabolism , Homologous Recombination/genetics , Animals , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/radiation effects , Germ Cells/cytology , Germ Cells/radiation effects , Meiosis/radiation effects , Models, Biological , Rad51 Recombinase/metabolism , Radiation, Ionizing
3.
Nat Commun ; 3: 980, 2012.
Article in English | MEDLINE | ID: mdl-22864573

ABSTRACT

Animal tool use is of inherent interest given its relationship to intelligence, innovation and cultural behaviour. Here we investigate whether Shark Bay bottlenose dolphins that use marine sponges as hunting tools (spongers) are culturally distinct from other dolphins in the population based on the criteria that sponging is both socially learned and distinguishes between groups. We use social network analysis to determine social preferences among 36 spongers and 69 non-spongers sampled over a 22-year period while controlling for location, sex and matrilineal relatedness. Homophily (the tendency to associate with similar others) based on tool-using status was evident in every analysis, although maternal kinship, sex and location also contributed to social preference. Female spongers were more cliquish and preferentially associated with other spongers over non-spongers. Like humans who preferentially associate with others who share their subculture, tool-using dolphins prefer others like themselves, strongly suggesting that sponge tool-use is a cultural behaviour.


Subject(s)
Dolphins/physiology , Social Behavior , Social Support , Animals , Behavior, Animal/physiology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...