Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10512, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006966

ABSTRACT

In this study, we measured diurnal patterns of sap flow (Vs) in cacao trees growing in three types of agroforestry systems (AFs) that differ in the incident solar radiation they receive. We modeled the relationship of Vs with several microclimatic characteristics of the AFs using mixed linear models. We characterized microclimatic variables that may have an effect on diurnal patterns of sap flow: air relative humidity, air temperature, photosynthetically active radiation and vapor pressure deficit. Overall, our model predicted the differences between cacao Vs in the three different AFs, with cacao plants with dense Musaceae plantation and high mean diurnal incident radiation (HPAR) displaying the highest differences compared to the other agroforestry arrangements. The model was also able to predict situations such as nocturnal transpiration in HPAR and inverse nocturnal sap flows indicative of hydraulic redistribution in the other AFs receiving less incident radiation. Overall, the model we present here can be a useful and cost-effective tool for predicting transpiration and water use in cacao trees, as well as for managing cacao agroforestry systems in the Amazon rainforest.

2.
PLoS One ; 9(10): e109405, 2014.
Article in English | MEDLINE | ID: mdl-25313514

ABSTRACT

Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the plot scale, through the optimization of the spatial structure and composition of the vegetation.


Subject(s)
Cacao , Heteroptera/physiology , Host-Pathogen Interactions/physiology , Phytophthora/physiology , Animals , Cacao/growth & development , Cacao/microbiology , Cacao/parasitology , Cameroon , Crops, Agricultural , Models, Statistical , Plant Diseases/microbiology , Plant Diseases/parasitology , Population Density , Population Dynamics , Principal Component Analysis
3.
Phytopathology ; 104(3): 275-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24168046

ABSTRACT

Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.


Subject(s)
Agaricales/physiology , Cacao/microbiology , Plant Diseases/microbiology , Biodiversity , Costa Rica , Crops, Agricultural , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...