Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Trends Hear ; 202016 May 17.
Article in English | MEDLINE | ID: mdl-27194155

ABSTRACT

The 10 consonant-nucleus-consonant (CNC) word lists are considered the gold standard in the testing of cochlear implant (CI) users. However, variance in scores across lists could degrade the sensitivity and reliability of them to identify deficits in speech perception. This study examined the relationship between variability in performance among lists and the lexical characteristics of the words. Data are from 28 adult CI users. Each subject was tested on all 10 CNC word lists. Data were analyzed in terms of lexical characteristics, lexical frequency, neighborhood density, bi-, and tri-phonemic probabilities. To determine whether individual performance variability across lists can be reduced, the standard set of 10 phonetically balanced 50-word lists was redistributed into a new set of lists using two sampling strategies: (a) balancing with respect to word lexical frequency or (b) selecting words with equal probability. The mean performance on the CNC lists varied from 53.1% to 62.4% correct. The average difference between the highest and lowest scores within individuals across the lists was 20.9% (from 12% to 28%). Lexical frequency and bi-phonemic probabilities were correlated with word recognition performance. The range of scores was not significantly reduced for all individuals when responses were simulated with 1,000 sets of redistributed lists, using both types of sampling methods. These results indicate that resampling of words does not affect the test-retest reliability and diagnostic value of the CNC word test.


Subject(s)
Cochlear Implantation/instrumentation , Cochlear Implants , Cues , Music , Persons With Hearing Impairments/rehabilitation , Pitch Perception , Acoustic Stimulation , Adult , Aged , Audiometry , Electric Stimulation , Female , Humans , Loudness Perception , Male , Persons With Hearing Impairments/psychology , Prosthesis Design , Recognition, Psychology
2.
J Assoc Res Otolaryngol ; 17(3): 237-52, 2016 06.
Article in English | MEDLINE | ID: mdl-26926152

ABSTRACT

Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.


Subject(s)
Auditory Threshold/physiology , Cochlear Implants , Speech Perception , Action Potentials , Adult , Aged , Aged, 80 and over , Electrodes, Implanted , Humans , Middle Aged , Neurons , Tomography, X-Ray Computed
3.
J Acoust Soc Am ; 140(6): 4404, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28039993

ABSTRACT

Suboptimal interfaces between cochlear implant (CI) electrodes and auditory neurons result in a loss or distortion of spectral information in specific frequency regions, which likely decreases CI users' speech identification performance. This study exploited speech acoustics to model regions of distorted CI frequency transmission to determine the perceptual consequences of suboptimal electrode-neuron interfaces. Normal hearing adults identified naturally spoken vowels and consonants after spectral information was manipulated through a noiseband vocoder: either (1) low-, middle-, or high-frequency regions of information were removed by zeroing the corresponding channel outputs, or (2) the same regions were distorted by splitting filter outputs to neighboring filters. These conditions simulated the detrimental effects of suboptimal CI electrode-neuron interfaces on spectral transmission. Vowel and consonant confusion patterns were analyzed with sequential information transmission, perceptual distance, and perceptual vowel space analyses. Results indicated that both types of spectral manipulation were equally destructive. Loss or distortion of frequency information produced similar effects on phoneme identification performance and confusion patterns. Consonant error patterns were consistently based on place of articulation. Vowel confusions showed that perceptions gravitated away from the degraded frequency region in a predictable manner, indicating that vowels can probe frequency-specific regions of spectral degradations.


Subject(s)
Cochlear Implants , Adult , Cochlea , Cochlear Implantation , Female , Humans , Male , Neurons , Phonetics , Speech Perception , Young Adult
4.
J Assoc Res Otolaryngol ; 16(2): 273-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25644786

ABSTRACT

Cochlear implant (CI) users usually exhibit marked across-electrode differences in detection thresholds with "focused" modes of stimulation, such as partial-tripolar (pTP) mode. This may reflect differences either in local neural survival or in the distance of the electrodes from the modiolus. To shed light on these two explanations, we compared stimulus-detection thresholds and gap-detection thresholds (GDTs) at comfortably loud levels for at least four electrodes in each of ten Advanced Bionics CI users, using 1031-pps pulse trains. The electrodes selected for each user had a wide range of stimulus-detection thresholds in pTP mode. We also measured across-electrode variations in both stimulus-detection and gap-detection tasks in monopolar (MP) mode. Both stimulus-detection and gap-detection thresholds correlated across modes. However, there was no significant correlation between stimulus-detection and gap-detection thresholds in either mode. Hence, gap-detection thresholds likely tap a source of across-electrode variation additional to, or different from, that revealed by stimulus-detection thresholds. Stimulus-detection thresholds were significantly lower for apical than for basal electrodes in both modes; this was only true for gap detection in pTP mode. Finally, although the across-electrode standard deviation in stimulus-detection thresholds was greater in pTP than in MP mode, the reliability of these differences--assessed by dividing the across-electrode standard deviation by the standard deviation across adaptive runs for each electrode--was similar for the two modes; this metric was also similar across modes for gap detection. Hence across-electrode differences can be revealed using clinically available MP stimulation, with a reliability comparable to that observed with focused stimulation.


Subject(s)
Auditory Threshold , Cochlear Implants , Electrodes, Implanted , Adult , Aged , Humans , Middle Aged
5.
Ear Hear ; 35(6): 641-51, 2014.
Article in English | MEDLINE | ID: mdl-25036146

ABSTRACT

OBJECTIVE: The objective of this study was to examine how the level of current required for cochlear implant listeners to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels, a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. DESIGN: Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing-those with the highest, median, and lowest thresholds-for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various pTP fractions. RESULTS: For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. CONCLUSIONS: Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields.


Subject(s)
Auditory Threshold/physiology , Cochlear Implants , Deafness/rehabilitation , Loudness Perception/physiology , Adult , Aged , Aged, 80 and over , Deafness/physiopathology , Female , Humans , Male , Middle Aged
6.
Ear Hear ; 32(4): 436-44, 2011.
Article in English | MEDLINE | ID: mdl-21178633

ABSTRACT

OBJECTIVES: The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. DESIGN: Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. RESULTS: Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. CONCLUSIONS: These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.


Subject(s)
Auditory Pathways/physiology , Cochlear Implantation/methods , Cochlear Implants , Deafness/therapy , Electrodes, Implanted , Evoked Potentials, Auditory, Brain Stem/physiology , Acoustic Stimulation , Adult , Aged , Artifacts , Auditory Pathways/cytology , Auditory Threshold/physiology , Brain Mapping , Deafness/physiopathology , Female , Humans , Male , Middle Aged , Neurons/physiology
7.
Trends Amplif ; 14(2): 84-95, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20724356

ABSTRACT

Cochlear implants are highly successful neural prostheses for persons with severe or profound hearing loss who gain little benefit from hearing aid amplification. Although implants are capable of providing important spectral and temporal cues for speech perception, performance on speech tests is variable across listeners. Psychophysical measures obtained from individual implant subjects can also be highly variable across implant channels. This review discusses evidence that such variability reflects deviations in the electrode-neuron interface, which refers to an implant channel's ability to effectively stimulate the auditory nerve. It is proposed that focused electrical stimulation is ideally suited to assess channel-to-channel irregularities in the electrode-neuron interface. In implant listeners, it is demonstrated that channels with relatively high thresholds, as measured with the tripolar configuration, exhibit broader psychophysical tuning curves and smaller dynamic ranges than channels with relatively low thresholds. Broader tuning implies that frequency-specific information intended for one population of neurons in the cochlea may activate more distant neurons, and a compressed dynamic range could make it more difficult to resolve intensity-based information, particularly in the presence of competing noise. Degradation of both types of cues would negatively affect speech perception.


Subject(s)
Cochlear Implants , Cochlear Nerve/physiopathology , Correction of Hearing Impairment , Hearing Loss/rehabilitation , Persons With Hearing Impairments/rehabilitation , Speech Perception , Acoustic Stimulation , Auditory Threshold , Cues , Hearing Loss/physiopathology , Hearing Loss/psychology , Humans , Prosthesis Design , Psychoacoustics , Signal Processing, Computer-Assisted , Speech Intelligibility
8.
Hear Res ; 270(1-2): 134-42, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20727397

ABSTRACT

This study examines patterns of neural activity in response to single biphasic electrical pulses, presented alone or following a forward masking pulse train, delivered by a cochlear implant. Recordings were made along the tonotopic axis of the central nucleus of the inferior colliculus (ICC) in ketamine/xylazine anesthetized guinea pigs. The partial tripolar electrode configuration was used, which provided a systematic way to vary the tonotopic extent of ICC activation between monopolar (broad) and tripolar (narrow) extremes while maintaining the same peak of activation. The forward masking paradigm consisted of a 200 ms masker pulse train (1017 pulses per second) followed 10 ms later by a single-pulse probe stimulus; the current fraction of the probe was set to 0 (monopolar), 1 (tripolar), or 0.5 (hybrid), and the fraction of the masker was fixed at 0.5. Forward masking tuning profiles were derived from the amount of masking current required to just suppress the activity produced by a fixed-level probe. These profiles were sharper for more focused probe configurations, approximating the pattern of neural activity elicited by single (non-masked) pulses. The result helps to bridge the gap between previous findings in animals and recent psychophysical data.


Subject(s)
Auditory Pathways/physiology , Auditory Perception , Cochlear Implants , Inferior Colliculi/physiology , Perceptual Masking , Acoustic Stimulation , Animals , Auditory Threshold , Electric Stimulation , Guinea Pigs , Time Factors
9.
Hear Res ; 268(1-2): 93-104, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20580801

ABSTRACT

The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions.


Subject(s)
Cochlear Implants , Cochlear Nerve/pathology , Computer Simulation , Models, Neurological , Scala Tympani/innervation , Spiral Ganglion/pathology , Cell Survival , Electric Stimulation , Humans , Numerical Analysis, Computer-Assisted , Prosthesis Design , Psychoacoustics , Sensory Thresholds
10.
Ear Hear ; 31(2): 247-58, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20090533

ABSTRACT

OBJECTIVE: The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. DESIGN: Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. RESULTS: Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. CONCLUSIONS: These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.


Subject(s)
Auditory Threshold , Cochlear Implantation , Cochlear Implants/adverse effects , Hearing Loss/pathology , Hearing Loss/therapy , Psychoacoustics , Acoustic Stimulation , Adult , Aged , Brain Mapping , Electric Stimulation , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Music , Perceptual Masking , Speech Perception , Spiral Ganglion/pathology
11.
J Acoust Soc Am ; 121(3): 1642-53, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17407901

ABSTRACT

The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.


Subject(s)
Auditory Perception/physiology , Cochlear Implants , Acoustics/instrumentation , Adult , Aged , Aged, 80 and over , Auditory Threshold/physiology , Cell Death , Cochlea/pathology , Cochlea/surgery , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Neurons/pathology
12.
Curr Opin Neurobiol ; 15(4): 488-93, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16009544

ABSTRACT

The cochlear implant arguably is the most successful neural prosthesis. Studies of the responses of the central auditory system to prosthetic electrical stimulation of the cochlea are revealing the success with which electrical stimulation of a deaf ear can mimic acoustic stimulation of a normal-hearing ear. Understanding of the physiology of central auditory structures can lead to improved restoration of hearing with cochlear implants. In turn, the cochlear implant can be exploited as an experimental tool for examining central hearing mechanisms isolated from the effects of cochlear mechanics and transduction.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping , Cochlear Implants , Neuronal Plasticity/physiology , Acoustic Stimulation , Animals , Deafness/physiopathology , Deafness/therapy , Electric Stimulation , Humans
13.
J Assoc Res Otolaryngol ; 5(1): 32-48, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14564662

ABSTRACT

This study examined the interactions between electrical stimuli presented through two channels of a cochlear implant. Experiments were conducted in anesthetized guinea pigs. Multiunit spike activity recorded from the auditory cortex reflected the cumulative effects of electric field interactions in the cochlea as well as any neural interactions along the ascending auditory pathway. The cochlea was stimulated electrically through a 6-electrode intracochlear array. The stimulus on each channel was a single 80- micro s/phase biphasic pulse. Channel interactions were quantified as changes in the thresholds for elevation of cortical spike rates. Experimental parameters were interchannel temporal offset (0 to +/-2000 micro s), interelectrode cochlear spacing (1.5 or 2.25 mm), electrode configuration (monopolar, bipolar, or tripolar), and relative polarity between channels (same or inverted). In most conditions, presentation of a subthreshold pulse on one channel reduced the threshold for a pulse on a second channel. Threshold shifts were greatest for simultaneous pulses, but appreciable threshold reductions could persist for temporal offsets up to 640 micro s. Channel interactions varied strongly with electrode configuration: threshold shifts increased in magnitude in the order tripolar, bipolar, monopolar. Channel interactions were greater for closer electrode spacing. The results have implications for design of speech processors for cochlear implants.


Subject(s)
Auditory Cortex/physiology , Cochlear Implants , Deafness/therapy , Animals , Auditory Perception/physiology , Auditory Threshold/physiology , Equipment Design , Guinea Pigs
14.
J Neurophysiol ; 87(1): 478-92, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11784764

ABSTRACT

This study examines patterns of auditory cortical activity elicited by single-pulse cochlear implant stimuli that vary in electrode configuration, cochlear place of stimulation, and stimulus level. Recordings were made from the primary auditory cortex (area A1) of ketamine-anesthetized guinea pigs. The spatiotemporal pattern of neural spike activity was measured simultaneously across 16 cortical locations spanning approximately 2-3 octaves of the tonotopic axis. Such a pattern, averaged over 40 presentations of any particular stimulus, was defined as the "cortical image" of that stimulus. Acutely deafened guinea pigs were implanted with a 6-electrode animal version of the 22-electrode Nucleus banded electrode array (Cochlear). Cochlear electrode configurations consisted of monopolar (MP), bipolar (BP + N) with N inactive electrodes between the active and return electrodes (0 < or = N < or = 4), tripolar (TP) with one active electrode and two flanking return electrodes, and common ground (CG) with one active electrode and as many as five return electrodes. Cortical images typically showed a focus of maximum spike probability and minimum latency. Spike probabilities tended to decrease, and latencies tended to increase, with increasing cortical distance from that focus. Cortical images of TP stimuli were the most spatially compact, followed by BP + N images, and then MP images, which were the broadest. Images of CG stimuli were rather variable across animals and stimulus channels. The locations of cortical images shifted systematically from caudal to rostral as the cochlear place of stimulation changed from basal to apical. At the most sensitive cortical site for each condition, the dynamic ranges over which spike rates increased with increased current level were restricted to about 1-2 dB, regardless of configuration. Dynamic ranges tended to increase with increasing cortical distance from the most sensitive site. Electrode configurations that produced compact cortical images (e.g., TP and BP + 0) showed the greatest range of thresholds within each cortical image and the largest dynamic range at cortical sites removed from the most sensitive site.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Cortex/physiology , Brain Mapping/methods , Cochlear Implants , Action Potentials/physiology , Animals , Auditory Threshold/physiology , Deafness/surgery , Electric Stimulation/instrumentation , Electric Stimulation/methods , Electrodes, Implanted , Guinea Pigs , Loudness Perception/physiology , Microelectrodes/standards , Reaction Time/physiology
15.
J Neurophysiol ; 87(1): 493-507, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11784765

ABSTRACT

This study quantified the accuracy with which populations of neurons in the auditory cortex can represent aspects of electrical cochlear stimuli presented through a cochlear implant. We tested the accuracy of coding of the place of stimulation (i.e., identification of the active stimulation channel) and of the stimulus current level. Physiological data came from the companion study, which recorded spike activity of neurons simultaneously from 16 sites along the tonotopic axis of the guinea pig's auditory cortex. In that study, cochlear electrical stimuli were presented to acutely deafened animals through a 6-electrode animal version of the 22-electrode Nucleus banded electrode array (Cochlear). Cochlear electrode configurations consisted of monopolar (MP), bipolar (BP + N) with N inactive electrodes between the active and return electrodes (0 < or = N < or = 3), tripolar (TP) with one active electrode and two flanking return electrodes, and common ground (CG) with one active electrode and as many as five return electrodes. In the present analysis, an artificial neural network was trained to recognize spatiotemporal patterns of cortical activity in response to single presentations of particular stimuli and, thereby, to identify those stimuli. The accuracy of pair-wise discrimination of stimulation channels or of current levels was represented by the discrimination index, d', where d' = 1 was taken as threshold. In many cases, the threshold for discrimination of place of cochlear stimulation was < 0.75 mm, and the threshold for discrimination of current levels was < 1 dB. Cochlear electrode configurations varied in the accuracy with which they signaled to the auditory cortex the place of cochlear stimulation. The BP + N and TP configurations provided considerably greater sensitivity to place of stimulation than did the MP configuration. The TP configuration maintained accurate signaling of place of stimulation up to the highest current levels, whereas sensitivity was degraded at high current levels in BP + N configurations. Electrode configurations also varied in the dynamic range over which they signaled stimulus current level. Dynamic ranges were widest for the BP + 0 configuration and narrowest for the TP configuration. That is, the configuration that showed the most accurate signaling of cochlear place of stimulation (TP) showed the most restricted dynamic range for signaling of current level. These results suggest that the choice of the optimal electrode configuration for use by human cochlear-prosthesis users would depend on the particular demands of the speech-processing strategy that is to be employed.


Subject(s)
Auditory Cortex/physiology , Cochlear Implants , Signal Processing, Computer-Assisted , Action Potentials/physiology , Animals , Auditory Threshold/physiology , Brain Mapping/methods , Cochlea/physiology , Deafness/surgery , Electric Stimulation/methods , Guinea Pigs , Loudness Perception/physiology , Neural Networks, Computer , Reaction Time/physiology , Statistical Distributions
SELECTION OF CITATIONS
SEARCH DETAIL
...