Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
2.
Nat Hum Behav ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632388

ABSTRACT

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

3.
Nat Genet ; 56(5): 792-808, 2024 May.
Article in English | MEDLINE | ID: mdl-38637617

ABSTRACT

Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/genetics , White People/genetics , Neurobiology , Genetic Loci
4.
medRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645236

ABSTRACT

Background: Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. Methods: As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. Results: We observed significantly higher CACNA1C (p<0.01) protein levels in subjects with BD. The risk SNP (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p=0.013) or no copies (p=0.009). We observed higher somatostatin (SST) (p<0.003) protein levels and lower levels of the clock protein ARTNL (p<0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p<0.001) in BD. SST and PER2 protein levels were associated with both alcohol dependence and lithium response. Conclusions: Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.

5.
Mol Psychiatry ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548982

ABSTRACT

Bipolar disorder is a chronic and complex polygenic disease with high rates of comorbidity. However, the independent contribution of either diagnosis or genetic risk of bipolar disorder to the medical comorbidity profile of individuals with the disease remains unresolved. Here, we conducted a multi-step phenome-wide association study (PheWAS) of bipolar disorder using phenomes derived from the electronic health records of participants enrolled in the Mayo Clinic Biobank and the Mayo Clinic Bipolar Disorder Biobank. First, we explored the conditions associated with a diagnosis of bipolar disorder by conducting a phenotype-based PheWAS followed by LASSO-penalized regression to account for correlations within the phenome. Then, we explored the conditions associated with bipolar disorder polygenic risk score (BD-PRS) using a PRS-based PheWAS with a sequential exclusion approach to account for the possibility that diagnosis, instead of genetic risk, may drive such associations. 53,386 participants (58.7% women) with a mean age at analysis of 67.8 years (SD = 15.6) were included. A bipolar disorder diagnosis (n = 1479) was associated with higher rates of psychiatric conditions, injuries and poisonings, endocrine/metabolic and neurological conditions, viral hepatitis C, and asthma. BD-PRS was associated with psychiatric comorbidities but, in contrast, had no positive associations with general medical conditions. While our findings warrant confirmation with longitudinal-prospective studies, the limited associations between bipolar disorder genetics and medical conditions suggest that shared environmental effects or environmental consequences of diagnosis may have a greater impact on the general medical comorbidity profile of individuals with bipolar disorder than its genetic risk.

6.
Res Sq ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464231

ABSTRACT

Background: Alcohol consumption behaviors and alcohol use disorder risk and presentation differ by sex, and these complex traits are associated with blood concentrations of the steroid sex hormones, testosterone and estradiol, and their regulatory binding proteins, sex hormone binding globulin (SHBG) and albumin. Genetic variation is associated with alcohol consumption and alcohol use disorder, as well as levels of steroid sex hormones and their binding proteins. Methods: To assess the contribution of genetic factors to previously described phenotypic associations between alcohol-use traits and sex-hormone levels, we estimated genetic correlations (rg) using summary statistics from prior published, large sample size genome-wide association studies (GWAS) of alcohol consumption, alcohol dependence, testosterone, estradiol, SHBG, and albumin. Results: For alcohol consumption, we observed positive genetic correlation (i.e. genetic effects in the same direction) with total testosterone in males (rg = 0.084, p = 0.007) and trends toward positive genetic correlation with bioavailable testosterone (rg = 0.060, p = 0.084) and SHBG in males (rg = 0.056, p = 0.086) and with albumin in a sex-combined cohort (rg = 0.082, p = 0.015); however in females, we observed positive genetic correlation with SHBG (rg = 0.089, p = 0.004) and a trend toward negative genetic correlation (i.e. genetic effects in opposite directions) with bioavailable testosterone (rg = -0.064, p = 0.032). For alcohol dependence, we observed a trend toward negative genetic correlation with total testosterone in females (rg = -0.106, p = 0.024) and positive genetic correlation with BMI-adjusted SHBG in males (rg = 0.119, p = 0.017). Several of these genetic correlations differed between females and males and were not in the same direction as the corresponding phenotypic associations. Conclusions: Findings suggest that shared genetic effects may contribute to positive associations of alcohol consumption with albumin in both sexes, as well as positive associations between alcohol consumption and bioavailable testosterone and between alcohol dependence and SHBG in males. However, relative contributions of heritable and environmental factors to associations between alcohol-use traits and sex-hormone levels may differ by sex, with genetic factors contributing more in males and environmental factors contributing more in females.

7.
Transl Psychiatry ; 14(1): 165, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531832

ABSTRACT

Alcohol use disorder (AUD) is the most prevalent substance use disorder worldwide. Acamprosate and naltrexone are anti-craving drugs used in AUD pharmacotherapy. However, molecular mechanisms underlying their anti-craving effect remain unclear. This study utilized a patient-derived induced pluripotent stem cell (iPSC)-based model system and anti-craving drugs that are used to treat AUD as "molecular probes" to identify possible mechanisms associated with alcohol craving. We examined the pathophysiology of craving and anti-craving drugs by performing functional genomics studies using iPSC-derived astrocytes and next-generation sequencing. Specifically, RNA sequencing performed using peripheral blood mononuclear cells from AUD patients with extreme values for alcohol craving intensity prior to treatment showed that inflammation-related pathways were highly associated with alcohol cravings. We then performed a genome-wide assessment of chromatin accessibility and gene expression profiles of induced iPSC-derived astrocytes in response to ethanol or anti-craving drugs. Those experiments identified drug-dependent epigenomic signatures, with IRF3 as the most significantly enriched motif in chromatin accessible regions. Furthermore, the activation of IRF3 was associated with ethanol-induced endoplasmic reticulum (ER) stress which could be attenuated by anti-craving drugs, suggesting that ER stress attenuation might be a target for anti-craving agents. In conclusion, we found that craving intensity was associated with alcohol consumption and treatment outcomes. Our functional genomic studies suggest possible relationships among craving, ER stress, IRF3 and the actions of anti-craving drugs.


Subject(s)
Alcoholism , Craving , Humans , Craving/physiology , Leukocytes, Mononuclear , Multiomics , Alcoholism/complications , Alcohol Drinking , Ethanol , Chromatin , Interferon Regulatory Factor-3/pharmacology
8.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395906

ABSTRACT

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome-Wide Association Study , Multiomics , Focal Adhesions
9.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405768

ABSTRACT

Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 22 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, YWHAE, DPH1, GSDMB, MED24, THRA, EEF1A2, and KCNQ2 in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance and transferability of BD polygenic risk scores across ancestrally diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).

10.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38410442

ABSTRACT

Background: Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims: Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods: Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results: While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions: We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls - MDD - BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD.

11.
Drug Alcohol Depend ; 256: 111116, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364647

ABSTRACT

BACKGROUND: Alcohol use disorders are prevalent mental disorders with significant health implications. Epigenetic alterations may play a role in their pathogenesis, as DNA methylation at several genes has been associated with these disorders. We have previously shown that methylation in the DLGAP2 gene, coding for a synaptic density protein, is associated with alcohol dependence. In this study, we aimed to examine the association between DLGAP2 methylation and treatment response among patients undergoing acamprosate treatment. METHODS: 102 patients under acamprosate treatment were included. DNA methylation analysis at DLGAP2 was performed by bisulfite pyrosequencing at the start and after 3-month treatment. Treatment outcomes were having a relapse during the treatment and severity of craving at the end of three months. Cox proportional hazard and linear regression models were performed. RESULTS: Patients whose methylation levels were decreased during the treatment showed an increased risk for relapse within three months in comparison to the ones without methylation change (hazard ratio [HR]=2.44; 95% confidence interval [CI]=1.04, 5.73; p=0.04). For the same group, a positive association for the severity of craving was observed, yet statistical significance was not reached (ß=2.97; 95% CI=-0.41, 6.34; p=0.08). CONCLUSION: We demonstrate that patients whose DLGAP2 methylation levels decrease during acamprosate treatment are more likely to relapse compared to the ones without changes. This is in line with our previous findings showing that DLGAP2 methylation is lower in alcohol dependent subjects compared to controls, and might suggest a role for changes in DLGAP2 methylation in treatment response.


Subject(s)
Alcoholism , Humans , Alcoholism/drug therapy , Alcoholism/genetics , Acamprosate , DNA Methylation , Chronic Disease , Recurrence , Nerve Tissue Proteins
12.
Transl Psychiatry ; 14(1): 93, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351009

ABSTRACT

There is increasing interest in individualizing treatment selection for more than 25 regulatory approved treatments for major depressive disorder (MDD). Despite an inconclusive efficacy evidence base, antidepressants (ADs) are prescribed for the depressive phase of bipolar disorder (BD) with oftentimes, an inadequate treatment response and or clinical concern for mood destabilization. This study explored the relationship between antidepressant response in MDD and antidepressant-associated treatment emergent mania (TEM) in BD. We conducted a genome-wide association study (GWAS) and polygenic score analysis of TEM and tested its association in a subset of BD-type I patients treated with SSRIs or SNRIs. Our results did not identify any genome-wide significant variants although, we found that a higher polygenic score (PGS) for antidepressant response in MDD was associated with higher odds of TEM in BD. Future studies with larger transdiagnostic depressed cohorts treated with antidepressants are encouraged to identify a neurobiological mechanism associated with a spectrum of depression improvement from response to emergent mania.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/chemically induced , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Mania/chemically induced , Mania/drug therapy , Depression , Pharmacogenetics , Genome-Wide Association Study , Antidepressive Agents/therapeutic use
13.
Bipolar Disord ; 26(1): 22-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37463846

ABSTRACT

OBJECTIVES: To understand treatment practices for bipolar disorders (BD), this study leveraged the Global Bipolar Cohort collaborative network to investigate pharmacotherapeutic treatment patterns in multiple cohorts of well-characterized individuals with BD in North America, Europe, and Australia. METHODS: Data on pharmacotherapy, demographics, diagnostic subtypes, and comorbidities were provided from each participating cohort. Individual site and regional pooled proportional meta-analyses with generalized linear mixed methods were conducted to identify prescription patterns. RESULTS: This study included 10,351 individuals from North America (n = 3985), Europe (n = 3822), and Australia (n = 2544). Overall, participants were predominantly female (60%) with BD-I (60%; vs. BD-II = 33%). Cross-sectionally, mood-stabilizing anticonvulsants (44%), second-generation antipsychotics (42%), and antidepressants (38%) were the most prescribed medications. Lithium was prescribed in 29% of patients, primarily in the Australian (31%) and European (36%) cohorts. First-generation antipsychotics were prescribed in 24% of the European versus 1% in the North American cohort. Antidepressant prescription rates were higher in BD-II (47%) compared to BD-I (35%). Major limitations were significant differences among cohorts based on inclusion/exclusion criteria, data source, and time/year of enrollment into cohort. CONCLUSIONS: Mood-stabilizing anticonvulsants, second-generation antipsychotics, and antidepressants were the most prescribed medications suggesting prescription patterns that are not necessarily guideline concordant. Significant differences exist in the prescription practices across different geographic regions, especially the underutilization of lithium in the North American cohorts and the higher utilization of first-generation antipsychotics in the European cohorts. There is a need to conduct future longitudinal studies to further explore these differences and their impact on outcomes, and to inform and implement evidence-based guidelines to help improve treatment practices in BD.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , Humans , Female , Male , Bipolar Disorder/drug therapy , Bipolar Disorder/epidemiology , Bipolar Disorder/diagnosis , Lithium/therapeutic use , Anticonvulsants/therapeutic use , Australia/epidemiology , Antipsychotic Agents/therapeutic use , Antidepressive Agents/therapeutic use
14.
Res Sq ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38077040

ABSTRACT

Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

15.
Psychol Med ; 53(15): 7368-7374, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38078748

ABSTRACT

BACKGROUND: Depression and anxiety are common and highly comorbid, and their comorbidity is associated with poorer outcomes posing clinical and public health concerns. We evaluated the polygenic contribution to comorbid depression and anxiety, and to each in isolation. METHODS: Diagnostic codes were extracted from electronic health records for four biobanks [N = 177 865 including 138 632 European (77.9%), 25 612 African (14.4%), and 13 621 Hispanic (7.7%) ancestry participants]. The outcome was a four-level variable representing the depression/anxiety diagnosis group: neither, depression-only, anxiety-only, and comorbid. Multinomial regression was used to test for association of depression and anxiety polygenic risk scores (PRSs) with the outcome while adjusting for principal components of ancestry. RESULTS: In total, 132 960 patients had neither diagnosis (74.8%), 16 092 depression-only (9.0%), 13 098 anxiety-only (7.4%), and 16 584 comorbid (9.3%). In the European meta-analysis across biobanks, both PRSs were higher in each diagnosis group compared to controls. Notably, depression-PRS (OR 1.20 per s.d. increase in PRS; 95% CI 1.18-1.23) and anxiety-PRS (OR 1.07; 95% CI 1.05-1.09) had the largest effect when the comorbid group was compared with controls. Furthermore, the depression-PRS was significantly higher in the comorbid group than the depression-only group (OR 1.09; 95% CI 1.06-1.12) and the anxiety-only group (OR 1.15; 95% CI 1.11-1.19) and was significantly higher in the depression-only group than the anxiety-only group (OR 1.06; 95% CI 1.02-1.09), showing a genetic risk gradient across the conditions and the comorbidity. CONCLUSIONS: This study suggests that depression and anxiety have partially independent genetic liabilities and the genetic vulnerabilities to depression and anxiety make distinct contributions to comorbid depression and anxiety.


Subject(s)
Depression , Electronic Health Records , Humans , Anxiety/epidemiology , Anxiety/genetics , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics , Comorbidity , Depression/epidemiology , Depression/genetics , Multifactorial Inheritance , Risk Factors
16.
J Womens Health (Larchmt) ; 32(11): 1229-1240, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37856151

ABSTRACT

Background: Antidepressants are among the most prescribed medications in the United States. The aim of this study was to explore the prevalence of antidepressant prescriptions and investigate sex differences and age-sex interactions in adults enrolled in the Right Drug, Right Dose, Right Time: Using Genomic Data to Individualize Treatment (RIGHT) study. Materials and Methods: We conducted a retrospective analysis of the RIGHT study. Using electronic prescriptions, we assessed 12-month prevalence of antidepressant treatment. Sex differences and age-sex interactions were evaluated using multivariable logistic regression and flexible recursive smoothing splines. Results: The sample consisted of 11,087 participants (60% women). Antidepressant prescription prevalence was 22.24% (27.96% women, 13.58% men). After adjusting for age and enrollment year, women had significantly greater odds of antidepressant prescription (odds ratio = 2.29; 95% confidence interval = 2.07, 2.54). Furthermore, selective serotonin reuptake inhibitors (SSRIs) had a significant age-sex interaction. While SSRI prescriptions in men showed a sustained decrease with age, there was no such decline for women until after reaching ∼50 years of age. There are important limitations to consider in this study. Electronic prescription data were cross-sectional; information on treatment duration or adherence was not collected; this cohort is not nationally representative; and enrollment occurred over a broad period, introducing confounding by changes in temporal prescribing practices. Conclusions: Underscored by the significant interaction between age and sex on odds of SSRI prescription, our results warrant age to be incorporated as a mediator when investigating sex differences in mental illness, especially mood disorders and their treatment.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Sex Characteristics , Adult , Humans , Female , Male , United States/epidemiology , Middle Aged , Selective Serotonin Reuptake Inhibitors/therapeutic use , Retrospective Studies , Prevalence , Antidepressive Agents/therapeutic use , Cohort Studies
17.
Res Sq ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37886563

ABSTRACT

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.

18.
medRxiv ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37693460

ABSTRACT

Posttraumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 novel). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (e.g., GRIA1, GRM8, CACNA1E ), developmental, axon guidance, and transcription factors (e.g., FOXP2, EFNA5, DCC ), synaptic structure and function genes (e.g., PCLO, NCAM1, PDE4B ), and endocrine or immune regulators (e.g., ESR1, TRAF3, TANK ). Additional top genes influence stress, immune, fear, and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.

19.
J Clin Psychopharmacol ; 43(5): 428-433, 2023.
Article in English | MEDLINE | ID: mdl-37683232

ABSTRACT

BACKGROUND: The purpose of this study was to review the association between the SLC6A4 5-HTTLPR polymorphism and antidepressant (AD)-associated treatment emergent mania (TEM) in bipolar disorder alongside starting a discussion on the merits of developing risk stratification models to guide when not to provide AD treatment for bipolar depression. METHODS: Studies that examined the association between clinical and genetic risk factors, specifically monoaminergic transporter genetic variation, and TEM were identified. A meta-analysis was performed using the odds ratio to estimate the effect size under the Der-Simonian and Laird model. RESULTS: Seven studies, referencing the SLC6A4 5-HTTLPR polymorphism and TEM (total N = 1578; TEM+ =594, TEM- = 984), of 142 identified articles were included. The time duration between the start of the AD to emergence of TEM ranged from 4 to 12 weeks. There was a nominally significant association between the s allele of the 5-HTTLPR polymorphism and TEM (odds ratio, 1.434; 95% confidence interval, 1.001-2.055; P = 0.0493; I2 = 52%). No studies have investigated norepinephrine or dopamine transporters. CONCLUSION: Although the serotonin transporter genetic variation is commercially available in pharmacogenomic decision support tools, greater efforts, more broadly, should focus on complete genome-wide approaches to determine genetic variants that may contribute to TEM. Moreover, these data are exemplary to the merits of developing risk stratification models, which include both clinical and biological risk factors, to guide when not to use ADs in bipolar disorder. Future studies will need to validate new risk models that best inform the development of personalized medicine best practices treating bipolar depression.


Subject(s)
Bipolar Disorder , Mania , Humans , Antidepressive Agents/adverse effects , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/chemically induced , Pharmacogenetics , Polymorphism, Genetic/genetics , Serotonin Plasma Membrane Transport Proteins/genetics
20.
Mol Metab ; 77: 101798, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689244

ABSTRACT

OBJECTIVE: Fibroblast growth factor 21 (FGF21) analogs have been tested as potential therapeutics for substance use disorders. Prior research suggests that FGF21 administration might affect alcohol consumption and reward behaviors. Our recent report showed that plasma FGF21 levels were positively correlated with alcohol use in patients with alcohol use disorder (AUD). FGF21 has a short half-life (0.5-2 h) and crosses the blood-brain barrier. Therefore, we set out to identify molecular mechanisms for both the naïve form of FGF21 and a long-acting FGF21 molecule (PF-05231023) in induced pluripotent stem cell (iPSC)-derived forebrain neurons. METHODS: We performed RNA-seq in iPSC-derived forebrain neurons treated with naïve FGF21 or PF-05231023 at physiologically relevant concentrations. We obtained plasma levels of FGF21 and GABA from our previous AUD clinical trial (n = 442). We performed ELISA for FGF21 in both iPSC-derived forebrain neurons and forebrain organoids. We determined protein interactions using co-immunoprecipitation. Finally, we applied ChIP assays to confirm the occupancy of REST, EZH2 and H3K27me3 by FGF21 using iPSC-derived forebrain neurons with and without drug exposure. RESULTS: We identified 4701 and 1956 differentially expressed genes in response to naïve FGF21 or PF-05231023, respectively (FDR < 0.05). Notably, 974 differentially expressed genes overlapped between treatment with naïve FGF21 and PF-05231023. REST was the most important upstream regulator of differentially expressed genes. The GABAergic synapse pathway was the most significant pathway identified using the overlapping genes. We also observed a significant positive correlation between plasma FGF21 and GABA concentrations in AUD patients. In parallel, FGF21 and PF-05231023 significantly induced GABA levels in iPSC-derived neurons. Finally, functional genomics studies showed a drug-dependent occupancy of REST, EZH2, and H3K27me3 in the promoter regions of genes involved in GABA catabolism which resulted in transcriptional repression. CONCLUSIONS: Our results highlight a significant role in the epigenetic regulation of genes involved in GABA catabolism related to FGF21 action. (The ClinicalTrials.gov Identifier: NCT00662571).

SELECTION OF CITATIONS
SEARCH DETAIL
...