Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Phys Rev E ; 109(5-2): 055106, 2024 May.
Article in English | MEDLINE | ID: mdl-38907504

ABSTRACT

We present a study of the intermittent properties of a shell model of turbulence with statistics of ∼10^{7} eddy turn over time, achieved thanks to an implementation on a large-scale parallel GPU factory. This allows us to quantify the inertial range anomalous scaling properties of the velocity fluctuations up to the 24th-order moment. Through a careful assessment of the statistical and systematic uncertainties, we show that none of the phenomenological and theoretical models previously proposed in the literature to predict the anomalous power-law exponents in the inertial range are in agreement with our high-precision numerical measurements. We find that at asymptotically high-order moments, the anomalous exponents tend toward a linear scaling, suggesting that extreme turbulent events are dominated by one leading singularity. We found that systematic corrections to scaling induced by the infrared and ultraviolet (viscous) cutoffs are the main limitations to precision for low-order moments, while high orders are mainly affected by the finite statistical samples.. The high-fidelity numerical results reported in this work offer an ideal benchmark for the development of future theoretical models of intermittency in dynamical systems for either extreme events (high-order moments) or typical fluctuations (low-order moments). For the latter, we show that we achieve a precision in the determination of the inertial range scaling exponents of the order of one part over ten thousand (fifth significant digit), which may be considered a record for out-of-equilibrium fluid-mechanics systems and models.

2.
Phys Rev E ; 109(4-2): 045304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755934

ABSTRACT

Metastability in liquids is at the foundation of complex phase transformation dynamics such as nucleation and cavitation. Intermolecular interaction details, beyond the equation of state, and thermal hydrodynamic fluctuations play a crucial role. However, most numerical approaches suffer from a slow time and space convergence, thus hindering the convergence to the hydrodynamic limit. This work shows that the Shan-Chen lattice Boltzmann model has the unique capability of simulating the hydrodynamics of the metastable state. The structure factor of density fluctuations is theoretically obtained and numerically verified to a high precision, for all simulated wave vectors, reduced temperatures, and pressures, deep into the metastable region. Such remarkable agreement between the theory and simulations leverages the exact implementation at the lattice level of the mechanical equilibrium condition. The static structure factor is found to consistently diverge as the temperature approaches the critical point or the density approaches the spinodal line at a subcritical temperature. Theoretically predicted critical exponents are observed in both cases. Finally, the phase separation in the unstable branch follows the same pattern, i.e., the generation of interfaces with different topology, as observed in molecular dynamics simulations.

3.
Eur Phys J E Soft Matter ; 46(12): 132, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127225

ABSTRACT

Many out-of-equilibrium flows present non-Gaussian fluctuations in physically relevant observables, such as energy dissipation rate. This implies extreme fluctuations that, although rarely observed, have a significant phenomenology. Recently, path integral methods for importance sampling have emerged from formalism initially devised for quantum field theory and are being successfully applied to the Burgers equation and other fluid models. We proposed exploring the domain of application of these methods using a shell model, a dynamical system for turbulent energy cascade which can be numerically sampled for extreme events in an efficient manner and presents many interesting properties. We start from a validation of the instanton-based importance sampling methodology in the heat equation limit. We explored the limits of the method as nonlinearity grows stronger, finding good qualitative results for small values of the leading nonlinear coefficient. A worst agreement between numerical simulations of the whole systems and instanton results for estimation of the distribution's flatness is observed when increasing the nonlinear intensities.

4.
Eur Phys J E Soft Matter ; 46(5): 31, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37140827

ABSTRACT

Inference problems for two-dimensional snapshots of rotating turbulent flows are studied. We perform a systematic quantitative benchmark of point-wise and statistical reconstruction capabilities of the linear Extended Proper Orthogonal Decomposition (EPOD) method, a nonlinear Convolutional Neural Network (CNN) and a Generative Adversarial Network (GAN). We attack the important task of inferring one velocity component out of the measurement of a second one, and two cases are studied: (I) both components lay in the plane orthogonal to the rotation axis and (II) one of the two is parallel to the rotation axis. We show that EPOD method works well only for the former case where both components are strongly correlated, while CNN and GAN always outperform EPOD both concerning point-wise and statistical reconstructions. For case (II), when the input and output data are weakly correlated, all methods fail to reconstruct faithfully the point-wise information. In this case, only GAN is able to reconstruct the field in a statistical sense. The analysis is performed using both standard validation tools based on [Formula: see text] spatial distance between the prediction and the ground truth and more sophisticated multi-scale analysis using wavelet decomposition. Statistical validation is based on standard Jensen-Shannon divergence between the probability density functions, spectral properties and multi-scale flatness.

5.
Eur Phys J E Soft Matter ; 46(3): 9, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36867296

ABSTRACT

We consider the problem of two active particles in 2D complex flows with the multi-objective goals of minimizing both the dispersion rate and the control activation cost of the pair. We approach the problem by means of multi-objective reinforcement learning (MORL), combining scalarization techniques together with a Q-learning algorithm, for Lagrangian drifters that have variable swimming velocity. We show that MORL is able to find a set of trade-off solutions forming an optimal Pareto frontier. As a benchmark, we show that a set of heuristic strategies are dominated by the MORL solutions. We consider the situation in which the agents cannot update their control variables continuously, but only after a discrete (decision) time, [Formula: see text]. We show that there is a range of decision times, in between the Lyapunov time and the continuous updating limit, where reinforcement learning finds strategies that significantly improve over heuristics. In particular, we discuss how large decision times require enhanced knowledge of the flow, whereas for smaller [Formula: see text] all a priori heuristic strategies become Pareto optimal.

6.
Eur Phys J E Soft Matter ; 46(3): 16, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36939938

ABSTRACT

We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent Rayleigh-Bénard flows using only temperature information. We perform a quantitative analysis of the quality of the reconstructions at various amounts of low-passed-filtered information and turbulent intensities. We compare our results with those obtained via nudging, a classical equation-informed data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data for temperature is provided with high spatial and temporal density. When data becomes sparse, the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra. Visualizations of temperature (top) and vertical velocity (bottom) for the flow with [Formula: see text]. The left column shows the reference data, the other three columns show the reconstructions obtained with [Formula: see text], 14 and 31. The locations of the measuring probes (corresponding to the case with [Formula: see text]) are marked with white dots on top of [Formula: see text]. All visualizations share the same colorbar.

7.
Phys Rev Lett ; 128(20): 209901, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657905

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.118.158004.

8.
Phys Rev E ; 105(1-2): 015301, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193309

ABSTRACT

We demonstrate that the multiphase Shan-Chen lattice Boltzmann method (LBM) yields a curvature dependent surface tension σ as computed from three-dimensional hydrostatic droplets and bubbles simulations. Such curvature dependence is routinely characterized, at first order, by the so-called Tolman length δ. LBM allows one to precisely compute σ at the surface of tension R_{s} and determine the Tolman length from the coefficient of the first order correction. The corresponding values of δ display universality for different equations of state, following a power-law scaling near the critical temperature. The Tolman length has been studied so far mainly via computationally demanding Molecular Dynamics simulations or by means of Density Functional Theory approaches playing a pivotal role in extending Classical Nucleation Theory. The present results open a hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length, alongside real-world applications to cavitation phenomena, can be effectively tackled. All the results can be independently reproduced through the "idea.deploy" framework.

9.
Eur Phys J E Soft Matter ; 44(11): 142, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34821992

ABSTRACT

We present mesoscale numerical simulations based on the coupling of the fluctuating lattice Boltzmann method for multicomponent systems with a wetted finite-size particle model. This newly coupled methodologies are used to study the motion of a spherical particle driven by a constant body force in a confined channel with a fixed square cross section. The channel is filled with a mixture of two liquids under the effect of thermal fluctuations. After some validations steps in the absence of fluctuations, we study the fluctuations in the particle's velocity at changing thermal energy, applied force, particle size, and particle wettability. The importance of fluctuations with respect to the mean settling velocity is quantitatively assessed, especially in comparison with unconfined situations. Results show that the expected effects of confinement are very well captured by the numerical simulations, wherein the confinement strongly enhances the importance of velocity fluctuations, which can be one order of magnitude larger than what expected in unconfined domains. The observed findings underscore the versatility of the proposed methodology in highlighting the effects of confinement on the motion of particles in the presence of thermal fluctuations.

10.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200395, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34455835

ABSTRACT

The tumbling to tank-treading (TB-TT) transition for red blood cells (RBCs) has been widely investigated, with a main focus on the effects of the viscosity ratio [Formula: see text] (i.e., the ratio between the viscosities of the fluids inside and outside the membrane) and the shear rate [Formula: see text] applied to the RBC. However, the membrane viscosity [Formula: see text] plays a major role in a realistic description of RBC dynamics, and only a few works have systematically focused on its effects on the TB-TT transition. In this work, we provide a parametric investigation on the effect of membrane viscosity [Formula: see text] on the TB-TT transition for a single RBC. It is found that, at fixed viscosity ratios [Formula: see text], larger values of [Formula: see text] lead to an increased range of values of capillary number at which the TB-TT transition occurs; moreover, we found that increasing [Formula: see text] or increasing [Formula: see text] results in a qualitatively but not quantitatively similar behaviour. All results are obtained by means of mesoscale numerical simulations based on the lattice Boltzmann models. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

11.
Phys Rev Lett ; 126(25): 254501, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241532

ABSTRACT

Inertial-range features of turbulence are investigated using data from experimental measurements of grid turbulence and direct numerical simulations of isotropic turbulence simulated in a periodic box, both at the Taylor-scale Reynolds number R_{λ}∼1000. In particular, oscillations modulating the power-law scaling in the inertial range are examined for structure functions up to sixth-order moments. The oscillations in exponent ratios decrease with increasing sample size in simulations, although in experiments they survive at a low value of 4 parts in 1000 even after massive averaging. The two datasets are consistent in their intermittent character but differ in small but observable respects. Neither the scaling exponents themselves nor all the viscous effects are consistently reproduced by existing models of intermittency.

12.
Phys Rev E ; 103(6-1): 063309, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271640

ABSTRACT

We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multiphase lattice Boltzmann models (LBM) with multirange interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multirange potentials. As an immediate application, the obtained LBM forcing schemes are tested via numerical simulations of nonideal equilibrium interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen method for LBM. We argue this will be beneficial for future studies of nonideal interfaces.

13.
Phys Rev E ; 103(2-1): 023109, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736027

ABSTRACT

The motion of microswimmers in complex flows is ruled by the interplay between swimmer propulsion and the dynamics induced by the fluid velocity field. Here we study the motion of a chiral microswimmer whose propulsion is provided by the spinning of a helical tail with respect to its body in a simple shear flow. Thanks to an efficient computational strategy that allowed us to simulate thousands of different trajectories, we show that the tail shape dramatically affects the swimmer's motion. In the shear dominated regime, the swimmers carrying an elliptical helical tail show several different Jeffery-like (tumbling) trajectories depending on their initial configuration. As the propulsion torque increases, a progressive regularization of the motion is observed until, in the propulsion dominated regime, the swimmers converge to the same final trajectory independently on the initial configuration. Overall, our results show that elliptical helix swimmer presents a much richer variety of trajectories with respect to the usually studied circular helix tails.

14.
Phys Rev E ; 102(1-1): 012402, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794953

ABSTRACT

Finding the source of an odor dispersed by a turbulent flow is a vital task for many organisms. When many individuals concurrently perform the same olfactory search task, sharing information about other members' decisions can potentially boost the performance. But how much of this information is actually exploitable for the collective task? Here we show, in a model of a swarm of agents inspired by moth behavior, that there is an optimal way to blend the private information about odor and wind detections with the public information about other agents' heading direction. Our results suggest an efficient multiagent olfactory search algorithm that could prove useful in robotics, e.g., in the identification of sources of harmful volatile compounds.

15.
Soft Matter ; 16(26): 6191-6205, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32567630

ABSTRACT

Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at the mesoscale. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the broad variety of fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time tc following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid (SLS) model to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity µm to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.


Subject(s)
Erythrocyte Deformability , Erythrocytes , Blood Viscosity , Erythrocyte Membrane , Viscosity
16.
Phys Rev Lett ; 124(8): 084504, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167371

ABSTRACT

By means of high-resolution numerical simulations, we compare the statistical properties of homogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex filaments are strongly depleted, thanks to a nonlinear extra viscosity acting preferentially on high vorticity regions. We show that the presence of such smart small-scale drag can strongly reduce intermittency and non-Gaussian fluctuations. Our results pave the way towards a deeper understanding on the fundamental role of degrees of freedom in turbulence as well as on the impact of (pseudo)coherent structures on the statistical small-scale properties. Our work can be seen as a first attempt to develop smart-Lagrangian forcing or drag mechanisms to control turbulence.

17.
Phys Rev Lett ; 123(1): 014503, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31386411

ABSTRACT

A class of spectral subgrid models based on a self-similar and reversible closure is studied with the aim to minimize the impact of subgrid scales on the inertial range of fully developed turbulence. In this manner, we improve the scale extension where anomalous exponents are measured by roughly 1 order of magnitude when compared to direct numerical simulations or to other popular subgrid closures at the same resolution. We find a first indication that intermittency for high-order moments is not captured by many of the popular phenomenological models developed so far.

18.
Chaos ; 29(6): 063102, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31266309

ABSTRACT

We present a new method for sampling rare and large fluctuations in a nonequilibrium system governed by a stochastic partial differential equation (SPDE) with additive forcing. To this end, we deploy the so-called instanton formalism that corresponds to a saddle-point approximation of the action in the path integral formulation of the underlying SPDE. The crucial step in our approach is the formulation of an alternative SPDE that incorporates knowledge of the instanton solution such that we are able to constrain the dynamical evolutions around extreme flow configurations only. Finally, a reweighting procedure based on the Girsanov theorem is applied to recover the full distribution function of the original system. The entire procedure is demonstrated on the example of the one-dimensional Burgers equation. Furthermore, we compare our method to conventional direct numerical simulations as well as to Hybrid Monte Carlo methods. It will be shown that the instanton-based sampling method outperforms both approaches and allows for an accurate quantification of the whole probability density function of velocity gradients from the core to the very far tails.

20.
Eur Phys J E Soft Matter ; 41(11): 131, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30413992

ABSTRACT

Rotating turbulence is an example of a three-dimensional system in which an inverse cascade of energy, from the small to the large scales, can be formed. While usually understood as a byproduct of the typical bidimensionalization of rotating flows, the role of the three-dimensional modes is not completely comprehended yet. In order to shed light on this issue, we performed direct numerical simulations of rotating turbulence where the 2D modes falling in the plane perpendicular to rotation are removed from the dynamical evolution. Our results show that while the two-dimensional modes are key to the formation of a stationary inverse cascade, the three-dimensional degrees of freedom play a non-trivial role in bringing energy to the larger scales also. Furthermore, we show that this backwards transfer of energy is carried out by the homochiral channels of the three-dimensional modes.

SELECTION OF CITATIONS
SEARCH DETAIL