Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
3.
Nat Commun ; 13(1): 3278, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672312

ABSTRACT

Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)-/- mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation.


Subject(s)
Maple Syrup Urine Disease , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Genetic Therapy , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/therapy , Mice , Phenotype
4.
Front Genome Ed ; 4: 785698, 2022.
Article in English | MEDLINE | ID: mdl-35359664

ABSTRACT

Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.

5.
J Neuromuscul Dis ; 9(1): 25-37, 2022.
Article in English | MEDLINE | ID: mdl-34864683

ABSTRACT

The development of new possible treatments for C9orf72-related ALS and the possibility of early identification of subjects genetically at risk of developing the disease is creating a critical need for biomarkers to track neurodegeneration that could be used as outcome measures in clinical trials. Current candidate biomarkers in C9orf72-ALS include neuropsychology tests, imaging, electrophysiology as well as different circulating biomarkers. Neuropsychology tests show early executive and verbal function involvement both in symptomatic and asymptomatic mutation carriers. At brain MRI, C9orf72-ALS patients present diffuse white and grey matter degeneration, which are already identified up to 20 years before symptom onset and that seem to be slowly progressive over time, while regions of altered connectivity at fMRI and of hypometabolism at [18F]FDG PET have been described as well. At the same time, spinal cord MRI has also shown progressive decrease of FA in the cortico-spinal tract over time. On the side of wet biomarkers, neurofilament proteins are increased both in the CSF and serum just before symptom onset and tend to slowly increase over time, while poly(GP) protein can be detected in the CSF and probably used as target engagement marker in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers , Calcium Channels/genetics , Gray Matter/diagnostic imaging , Neuroimaging , White Matter/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Gray Matter/pathology , Humans , White Matter/pathology
6.
Cell Rep ; 36(8): 109601, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433058

ABSTRACT

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Subject(s)
Actin Cytoskeleton/metabolism , Cofilin 1/metabolism , Destrin/metabolism , Lamin Type A/metabolism , Laminopathies/metabolism , Muscle, Striated/metabolism , Sarcomeres/metabolism , Adolescent , Adult , Animals , Cell Line , Child , Humans , Lamin Type A/genetics , Laminopathies/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Striated/pathology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation , Phosphorylation , Signal Transduction , Young Adult
7.
Front Cell Dev Biol ; 9: 662837, 2021.
Article in English | MEDLINE | ID: mdl-33937264

ABSTRACT

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.

8.
Mol Ther Methods Clin Dev ; 20: 1-17, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33335943

ABSTRACT

Fabry disease is a rare X-linked disorder affecting α-galactosidase A, a rate-limiting enzyme in lysosomal catabolism of glycosphingolipids. Current treatments present important limitations, such as low half-life and limited distribution, which gene therapy can overcome. The aim of this work was to test a novel adeno-associated viral vector, serotype 9 (AAV9), ubiquitously expressing human α-galactosidase A to treat Fabry disease (scAAV9-PGK-GLA). The vector was preliminary tested in newborns of a Fabry disease mouse model. 5 months after treatment, α-galactosidase A activity was detectable in the analyzed tissues, including the central nervous system. Moreover, we tested the vector in adult animals of both sexes at two doses and disease stages (presymptomatic and symptomatic) by single intravenous injection. We found that the exogenous α-galactosidase A was active in peripheral tissues as well as the central nervous system and prevented glycosphingolipid accumulation in treated animals up to 5 months following injection. Antibodies against α-galactosidase A were produced in 9 out of 32 treated animals, although enzyme activity in tissues was not significantly affected. These results demonstrate that scAAV9-PGK-GLA can drive widespread and sustained expression of α-galactosidase A, cross the blood brain barrier after systemic delivery, and reduce pathological signs of the Fabry disease mouse model.

9.
J Neuromuscul Dis ; 8(1): 25-38, 2021.
Article in English | MEDLINE | ID: mdl-33074186

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease's pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Clinical Trials as Topic , Genetic Therapy , Oligonucleotides, Antisense/therapeutic use , Humans
10.
J Pers Med ; 10(3)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751151

ABSTRACT

Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.

11.
Mol Ther ; 28(8): 1887-1901, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32470325

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Motor Neurons/metabolism , Motor Neurons/virology , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Animals , Disease Models, Animal , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Locomotion , Mice , Muscular Atrophy, Spinal/drug therapy , Phenotype , Prognosis , Promoter Regions, Genetic , Spinal Cord/metabolism , Spinal Cord/pathology , Survival of Motor Neuron 1 Protein/metabolism , Transduction, Genetic , Treatment Outcome
12.
Transl Neurodegener ; 8: 35, 2019.
Article in English | MEDLINE | ID: mdl-31827783

ABSTRACT

BACKGROUND: We recently demonstrated an endolysosomal accumulation of the ß-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. METHODS: EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. RESULTS: Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. CONCLUSIONS: This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.

13.
Thromb Haemost ; 119(12): 1956-1967, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31659733

ABSTRACT

Gene therapy using recombinant adeno-associated virus (AAV) has induced sustained long-term coagulation human factor IX (hFIX) levels in hemophilia B (HB) patients. However, asymptomatic transient liver toxicity was observed at high vector doses, highlighting the need to improve the potency of these vectors. We report the generation of an AAV transgene cassette containing the hyperfunctional hFIX-E456H variant showing improved binding to platelets, with a comparison to wild-type hFIX (hFIX-WT) and hFIX-R384L variant (Padua) transgenes, containing F9 truncated-intron 1 (I1). In vitro specific activity was increased by 3.2- and 4.2-fold with hFIX-E456H and hFIX-R384L variants compared with hFIX-WT, using chromogenic assay, and by 7-and 8.6-fold with hFIX-E456H and hFIX-R384L variants compared with hFIX-WT, using one-stage assay. The transgenes were packaged into single-stranded AAV2/8 vectors that were tail vein injected at 5 × 109, 2 × 1010, and 5 × 1010 vg per mouse in HB mice. Plasma FIX activity level, assessed by chromogenic assay, was up to fourfold higher for hFIX-E456H compared with hFIX-WT and was not different compared with hFIX-R384L, among the three dose cohorts. Overall, the in vivo specific activity was increased by threefold for hFIX-E456H and 4.9-fold for hFIX-R384L compared with hFIX-WT. At the lower dose of 5 × 109 vg, the blood loss was significantly lower for hFIX-E456H compared with hFIX-WT, but did not differ compared with hFIX-R384L. The results found for the hFIX-E456H variant indicate that it might be a suitable alternative for gene therapy of HB.


Subject(s)
Dependovirus , Factor IX/genetics , Genetic Therapy , Hemophilia B/blood , Hemophilia B/genetics , Animals , Blood Coagulation , Blood Platelets/metabolism , Blotting, Western , Cell Line, Tumor , Disease Models, Animal , Genetic Variation , Genetic Vectors , HEK293 Cells , Hemostasis , Humans , Liver/metabolism , Mice , Mice, Transgenic , Phenotype , Protein Binding , Transgenes
14.
Int J Mol Sci ; 20(18)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500113

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) with no cure. Recent advances in gene therapy open a new perspective to treat this disorder-particularly for the characterized genetic forms. Gene therapy approaches, involving the delivery of antisense oligonucleotides into the central nervous system (CNS) are being tested in clinical trials for patients with mutations in SOD1 or C9orf72 genes. Viral vectors can be used to deliver therapeutic sequences to stably transduce motor neurons in the CNS. Vectors derived from adeno-associated virus (AAV), can efficiently target genes and have been tested in several pre-clinical settings with promising outcomes. Recently, the Food and Drug Administration (FDA) approved Zolgensma, an AAV-mediated treatment for another MND-the infant form of spinal muscular atrophy. Given the accelerated progress in gene therapy, it is potentially a promising avenue to develop an efficient and safe cure for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Genetic Therapy , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , Disease Models, Animal , Gene Editing , Gene Expression , Gene Transfer Techniques , Genetic Predisposition to Disease , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Molecular Targeted Therapy , Motor Neurons/metabolism , Mutation , Superoxide Dismutase-1/genetics , Transgenes , Treatment Outcome
15.
Hum Mol Genet ; 27(17): 3060-3078, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29878125

ABSTRACT

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Subject(s)
Actins/metabolism , Cardiomyopathy, Dilated/pathology , Cofilin 1/metabolism , Lamin Type A/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Actins/genetics , Adolescent , Adult , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Case-Control Studies , Cofilin 1/genetics , Female , Heart/physiology , Humans , Lamin Type A/metabolism , Male , Mice , Middle Aged , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phosphorylation , Signal Transduction , Young Adult
16.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28587718

ABSTRACT

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Forkhead Box Protein O3/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Presenilins/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , Disease Models, Animal , Embryo, Mammalian , Fibroblasts , HEK293 Cells , Humans , Intracellular Space/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic
17.
Mol Ther ; 25(9): 2038-2052, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28663100

ABSTRACT

One of the most promising therapeutic approaches for familial amyotrophic lateral sclerosis linked to superoxide dismutase 1 (SOD1) is the suppression of toxic mutant SOD1 in the affected tissues. Here, we report an innovative molecular strategy for inducing substantial, widespread, and sustained reduction of mutant human SOD1 (hSOD1) levels throughout the body of SOD1G93A mice, leading to therapeutic effects in animals. Adeno-associated virus serotype rh10 vectors (AAV10) were used to mediate exon skipping of the hSOD1 pre-mRNA by expression of exon-2-targeted antisense sequences embedded in a modified U7 small-nuclear RNA (AAV10-U7-hSOD). Skipping of hSOD1 exon 2 led to the generation of a premature termination codon, inducing production of a deleted transcript that was subsequently degraded by the activation of nonsense-mediated decay. Combined intravenous and intracerebroventricular delivery of AAV10-U7-hSOD increased the survival of SOD1G93A mice injected either at birth or at 50 days of age (by 92% and 58%, respectively) and prevented weight loss and the decline of neuromuscular function. This study reports the effectiveness of an exon-skipping approach in SOD1-ALS mice, supporting the translation of this technology to the treatment of this as yet incurable disease.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Superoxide Dismutase-1/genetics , Age of Onset , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/therapy , Animals , Disease Models, Animal , Exons , Gene Order , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Humans , Mice , Mice, Transgenic , Motor Activity/genetics , Oligonucleotides, Antisense , RNA Splice Sites , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recovery of Function , Superoxide Dismutase-1/metabolism , Survival Rate , Transduction, Genetic
18.
Mol Neurodegener ; 11(1): 58, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27465358

ABSTRACT

BACKGROUND: We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure. RESULTS: LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7. CONCLUSIONS: This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects.


Subject(s)
Ataxin-7/metabolism , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Spinocerebellar Ataxias/genetics , Animals , Ataxin-7/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Humans , Lentivirus/genetics , Mice, Inbred C57BL , Neurons/metabolism , Phenotype
19.
Acta Neuropathol ; 132(2): 257-276, 2016 08.
Article in English | MEDLINE | ID: mdl-27138984

ABSTRACT

Endosomal-autophagic-lysosomal (EAL) dysfunction is an early and prominent neuropathological feature of Alzheimers's disease, yet the exact molecular mechanisms contributing to this pathology remain undefined. By combined biochemical, immunohistochemical and ultrastructural approaches, we demonstrate a link between EAL pathology and the intraneuronal accumulation of the ß-secretase-derived ßAPP fragment (C99) in two in vivo models, 3xTgAD mice and adeno-associated viral-mediated C99-infected mice. We present a pathological loop in which the accumulation of C99 is both the effect and causality of impaired lysosomal-autophagic function. The deleterious effect of C99 was found to be linked to its aggregation within EAL-vesicle membranes leading to disrupted lysosomal proteolysis and autophagic impairment. This effect was Aß independent and was even exacerbated when γ-secretase was pharmacologically inhibited. No effect was observed in inhibitor-treated wild-type animals suggesting that lysosomal dysfunction was indeed directly linked to C99 accumulation. In some brain areas, strong C99 expression also led to inflammatory responses and synaptic dysfunction. Taken together, this work demonstrates a toxic effect of C99 which could underlie some of the early-stage anatomical hallmarks of Alzheimer's disease pathology. Our work also proposes molecular mechanisms likely explaining some of the unfavorable side-effects associated with γ-secretase inhibitor-directed therapies.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Neurons/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Autophagy/physiology , Brain/metabolism , Disease Models, Animal , Endosomes/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology
20.
J Clin Invest ; 126(4): 1525-37, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26999605

ABSTRACT

Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.


Subject(s)
Autoimmune Diseases/metabolism , Estrogens/metabolism , Gene Expression Regulation , Sex Characteristics , Transcription Factors/biosynthesis , Adolescent , Adult , Animals , Autoimmune Diseases/genetics , Cells, Cultured , Child , Child, Preschool , CpG Islands , DNA Methylation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/genetics , Female , Humans , Infant , Male , Mice , Mice, Inbred C3H , Middle Aged , Thymus Gland/metabolism , Transcription Factors/genetics , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...