Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 38(5): 1241-1248, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31759733

ABSTRACT

In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-É£ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-É£ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.


Subject(s)
BCG Vaccine/administration & dosage , Immunization, Secondary/veterinary , Tuberculosis, Bovine , Animals , Bacterial Load , Cattle , Interferon-gamma/immunology , Lymph Nodes/microbiology , Mycobacterium bovis/immunology , Tuberculosis, Bovine/prevention & control , Vaccination/veterinary
2.
Vaccine ; 36(20): 2850-2854, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29655632

ABSTRACT

There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4+ T cells post-boosting. Here, the capacity of Ag85A-specific CD4+ T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4+ T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1ß, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4+ T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , Immunization, Secondary/methods , Inflammation/prevention & control , Mycobacterium bovis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis, Bovine/prevention & control , Acyltransferases/administration & dosage , Adenoviruses, Human/genetics , Animals , Antigens, Bacterial/administration & dosage , CD4-Positive T-Lymphocytes/immunology , Cattle , Drug Carriers , Inflammation/microbiology , Inflammation/pathology , Mycobacterium bovis/growth & development , Treatment Outcome , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/pathology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
3.
Vet Microbiol ; 209: 66-74, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28228336

ABSTRACT

PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells.


Subject(s)
Antigens, Viral/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibody Formation/immunology , Chitosan/chemistry , Peptides/administration & dosage , Peptides/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Viral Vaccines/chemistry , Viral Vaccines/standards
4.
Front Immunol ; 7: 40, 2016.
Article in English | MEDLINE | ID: mdl-26909080

ABSTRACT

The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress toward market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralizing antibodies, it has been proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely related (subtype 1) or divergent (subtype 3) PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5), and to a lesser extent, the matrix (M) protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by coexpression of TNF-α and mobilization of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved among strains of both PRRSV genotypes. Thus, M and NSP5 represent attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development.

5.
Dev Biol ; 400(1): 159-67, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25657058

ABSTRACT

Insects are ideally suited for gaining insight into the evolutionary developmental mechanisms that have led to adaptive changes of the nervous system since the specific structure of the nervous system can be directly linked to the neural stem cell (neuroblast) lineages, which in turn can be traced back to the last common ancestor of insects. The recent comparative analysis of the Drosophila melanogaster and Tribolium castaneum neuroblast maps revealed substantial differences in the expression profiles of neuroblasts. Here we show that despite the overall conservation of the dorso-ventral expression domains of muscle segment homeobox, intermediate neuroblasts defective and ventral nervous system defective, the expression of these genes relative to the neuroblasts in the respective domains has changed considerably during insect evolution. Furthermore, functional studies show evolutionary changes in the requirement of ventral nervous system defective in the formation of neuroblast 1-1 and the correct differentiation of its presumptive progeny, the pioneer neurons aCC and pCC. The inclusion of the expression data of the dorso-ventral genes into the recently established T. castaneum neuroblast map further increases the differences in the neuroblast expression profiles between D. melanogaster and T. castaneum. Despite these molecular variations, the Even-skipped positive pioneer neurons show an invariant arrangement, except for an additional Even-skipped positive cluster that we discovered in T. castaneum. Given the importance of these pioneer neurons in establishing the intersegmental nerves and the longitudinal tracts, which are part of the conserved axonal scaffold of arthropods, we discuss internal buffering mechanisms that might ensure that neuroblast lineages invariantly generate pioneer neurons over a wide range of molecular variations.


Subject(s)
Biological Evolution , Body Patterning/physiology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Nervous System/embryology , Neurons/metabolism , Tribolium/embryology , Animals , Body Patterning/genetics , Cloning, Molecular , DNA Primers/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , In Situ Hybridization , Neural Stem Cells/metabolism , Polymerase Chain Reaction , Species Specificity , Transcription Factors/metabolism
6.
Dev Biol ; 388(1): 103-16, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24525296

ABSTRACT

One of the major questions in evolutionary developmental neurobiology is how neuronal networks have been adapted to different morphologies and behaviour during evolution. Analyses of neurogenesis in representatives of all arthropod species have revealed evolutionary modifications of various developmental mechanisms. Among others, variations can be seen in mechanisms that are associated with changes in neural progenitor identity, which in turn determines the neuronal subtype of their progeny. Comparative analyses of the molecular processes that underlie the generation of neuronal identity might therefore uncover the steps of evolutionary changes that eventually resulted in modifications in neuronal networks. Here we address this question in the flour beetle Tribolium castaneum by analyzing and comparing the development and expression profile of neural stem cells (neuroblasts) to the published neuroblast map of the fruit fly Drosophila melanogaster. We show that substantial changes in the identity of neuroblasts have occurred during insect evolution. In almost all neuroblasts the relative positions in the ventral hemi-neuromeres are conserved; however, in over half of the neuroblasts the time of formation as well as the gene expression profile has changed. The neuroblast map presented here can be used for future comparative studies on individual neuroblast lineages in D. melanogaster and T. castaneum and additional markers and information on lineages can be added. Our data suggest that evolutionary changes in the expression profile of individual neuroblasts might have contributed to the evolution of neural diversity and subsequently to changes in neuronal networks in arthropod.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Neural Stem Cells/cytology , Animals , Cell Lineage , Chromosome Mapping , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Evolution, Molecular , Gene Expression Profiling , Genetic Markers/genetics , In Situ Hybridization , In Situ Hybridization, Fluorescence , Insecta , Nerve Net/physiology , Nervous System/embryology , Neurons/physiology , Polymerase Chain Reaction , Species Specificity , Time Factors , Tribolium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...