Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 542: 117279, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36871661

ABSTRACT

BACKGROUND: More than 3 y into the coronavirus 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to undergo mutations. In this context, the Receptor Binding Domain (RBD) is the most antigenic region among the SARS-CoV-2 Spike protein and has emerged as a promising candidate for immunological development. We designed an IgG-based indirect enzyme-linked immunoassay (ELISA) kit based on recombinant RBD, which was produced from the laboratory to 10 L industry scales in Pichia pastoris. METHODS: A recombinant-RBD comprising 283 residues (31 kDa) was constructed after epitope analyses. The target gene was initially cloned into an Escherichia coli TOP10 genotype and transformed into Pichia pastoris CBS7435 muts for protein production. Production was scaled up in a 10 L fermenter after a 1 L shake-flask cultivation. The product was ultrafiltered and purified using ion-exchange chromatography. IgG-positive human sera for SARS-CoV-2 were employed by an ELISA test to evaluate the antigenicity and specific binding of the produced protein. RESULTS: Bioreactor cultivation yielded 4 g/l of the target protein after 160 h of fermentation, and ion-exchange chromatography indicated a purity > 95%. A human serum ELISA test was performed in 4 parts, and the ROC area under the curve (AUC) was > 0.96 for each part. The mean specificity and sensitivity of each part was 100% and 91.5%, respectively. CONCLUSION: A highly specific and sensitive IgG-based serologic kit was developed for improved diagnostic purposes in patients with COVID-19 after generating an RBD antigen in Pichia pastoris at laboratory and 10 L fermentation scales.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Viral , Immunoglobulin G
2.
Antibodies (Basel) ; 11(2)2022 May 12.
Article in English | MEDLINE | ID: mdl-35645208

ABSTRACT

Questions and concerns regarding the efficacy and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines have plagued scientists since the BNT162b2 mRNA vaccine was introduced in late 2020. As a result, decisions about vaccine boosters based on breakthrough infection rates and the decline of antibody titers have commanded worldwide attention and research. COVID-19 patients have displayed continued severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike-protein-specific antibodies and neutralizing antibodies in longitudinal studies; in addition, cytokine activation has been detected at early steps following SARS-CoV-2 infection. Epitopes that are highly reactive and can mediate long-term antibody responses have been identified at the spike and ORF1ab proteins. The N-terminal domain of the S1 and S2 subunits is the location of important SARS-CoV-2 spike protein epitopes. High sequence identity between earlier and newer variants of SARS-CoV-2 and different degrees of sequence homology among endemic human coronaviruses have been observed. Understanding the extent and duration of protective immunity is consequential for determining the course of the COVID-19 pandemic. Further knowledge of memory responses to different variants of SARS-CoV-2 is needed to improve the design of the vaccine.

3.
Front Immunol ; 13: 890517, 2022.
Article in English | MEDLINE | ID: mdl-35711466

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated symptoms, named coronavirus disease 2019 (COVID-19), have rapidly spread worldwide, resulting in the declaration of a pandemic. When several countries began enacting quarantine and lockdown policies, the pandemic as it is now known truly began. While most patients have minimal symptoms, approximately 20% of verified subjects are suffering from serious medical consequences. Co-existing diseases, such as cardiovascular disease, cancer, diabetes, and others, have been shown to make patients more vulnerable to severe outcomes from COVID-19 by modulating host-viral interactions and immune responses, causing severe infection and mortality. In this review, we outline the putative signaling pathways at the interface of COVID-19 and several diseases, emphasizing the clinical and molecular implications of concurring diseases in COVID-19 clinical outcomes. As evidence is limited on co-existing diseases and COVID-19, most findings are preliminary, and further research is required for optimal management of patients with comorbidities.


Subject(s)
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics , Quarantine , SARS-CoV-2
4.
Immunology ; 166(4): 429-443, 2022 08.
Article in English | MEDLINE | ID: mdl-35470422

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has a complex interaction with the immune system, including growing evidence of sex-specific differences in the immune response. Sex-disaggregated analyses of epidemiological data indicate that males experience more severe symptoms and suffer higher mortality from COVID-19 than females. Many behavioural risk factors and biological factors may contribute to the different immune response. This review examines the immune response to SARS-CoV-2 infection in the context of sex, with emphasis on potential biological mechanisms explaining differences in clinical outcomes. Understanding sex differences in the pathophysiology of SARS-CoV-2 infection will help promote the development of specific strategies to manage the disease.


Subject(s)
COVID-19 , Female , Humans , Immunity , Male , Pandemics , Risk Factors , SARS-CoV-2 , Sex Factors
5.
Environ Res ; 196: 110933, 2021 05.
Article in English | MEDLINE | ID: mdl-33689818

ABSTRACT

Macrophages are a critical member of the innate immune system and can intensify tumor invasiveness and assist the growth of neoplastic cells. Moreover, they have the capability to reinforce immunosuppression and angiogenesis. Various investigations suggest that health-related issues, including inflammatory disorders and neoplastic diseases may be caused by environmental toxicant exposure. However, it is still unclear what role these environmental toxicants play in causing carcinogenesis by disturbing the mechanisms of migration, polarization, differentiation, and immune-stimulatory functions of macrophages. Accordingly, in this article, we will explore the interaction between environmental chemicals and inflammatory macrophage processes at the molecular level and their association with tumor progression and carcinogenesis.


Subject(s)
Neoplasms , Carcinogenesis , Cell Differentiation , Humans , Macrophages , Neoplasms/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...