Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-37656881

ABSTRACT

Biomanufacturing could contribute as much as ${\$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.

2.
Front Plant Sci ; 14: 1080116, 2023.
Article in English | MEDLINE | ID: mdl-36818841

ABSTRACT

The management of soybean rust (SBR) caused by the obligate fungus Phakopsora pachyrhizi mostly relies on the use of synthetic fungicides, especially in areas where the disease inflicts serious yield losses. The reliance on synthetic fungicides to manage this disease has resulted in resistance of P. pachyrhizi populations to most fungicides. In this study, bacteria isolated from diverse environments were evaluated for their biocontrol potential against P. pachyrhizi using soybean detached-leaf method and on-plant in the growth chamber, greenhouse, and field. Among 998 bacterial isolates evaluated using the detached-leaf method; 58% were isolated from plant-related materials, 27% from soil, 10% from insects, and 5% from other environments. Of the isolates screened, 73 were active (they had ⪖ 75% rust reduction) with an active rate of 7.3%. From the active isolates, 65 isolates were re-tested on-plant in the growth chamber for activity confirmation. In the confirmation test, 49 bacteria isolated from plant-related materials maintained their activity with a confirmation rate of 75%. The majority of bacteria with confirmed activity belonged to the taxonomic classes Bacilli and Gammaproteobacteria (70%). Active isolates were prioritized for greenhouse and field testing based on activity in the initial screen and confirmation test. Six bacterial isolates AFS000009 (Pseudomonas_E chlororaphis), AFS032321 (Bacillus subtilis), AFS042929 (Bacillus_C megaterium), AFS065981 (Bacillus_X simplex_A), AFS090698 (Bacillus_A thuringiensis_S), and AFS097295 (Bacillus_A toyonensis) were selected from those bacteria that maintained activity in the confirmation test and were evaluated in the greenhouse, and five among them were evaluated in the field. From the Alabama field evaluation, all bacterial isolates reduced rust infection as well as azoxystrobin (Quadris® at 0.3 L/ha) used as the fungicide control (P > 0.05). Moreover, the scanning electron micrographs demonstrated evidence of antagonistic activity of AFS000009 and AFS032321 against P. pachyrhizi urediniospores. Bacterial isolates that consistently showed activity comparable to that of azoxystrobin can be improved through fermentation and formulation optimization, developed, and deployed. These bacteria strains would provide a valuable alternative to the synthetic fungicides and could play a useful role in integrated disease management programs for this disease.

3.
mSystems ; 6(6): e0059921, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34904863

ABSTRACT

Construction and analysis of genome-scale metabolic models (GEMs) is a well-established systems biology approach that can be used to predict metabolic and growth phenotypes. The ability of GEMs to produce mechanistic insight into microbial ecological processes makes them appealing tools that can open a range of exciting opportunities in microbiome research. Here, we briefly outline these opportunities, present current rate-limiting challenges for the trustworthy application of GEMs to microbiome research, and suggest approaches for moving the field forward.

4.
PLoS One ; 12(8): e0182163, 2017.
Article in English | MEDLINE | ID: mdl-28767660

ABSTRACT

Interactions between microbes are central to the dynamics of microbial communities. Understanding these interactions is essential for the characterization of communities, yet challenging to accomplish in practice. There are limited available tools for characterizing diffusion-mediated, contact-independent microbial interactions. A practical and widely implemented technique in such characterization involves the simultaneous co-culture of distinct bacterial species and subsequent analysis of relative abundance in the total population. However, distinguishing between species can be logistically challenging. In this paper, we present a low-cost, vertical membrane, co-culture plate to quantify contact-independent interactions between distinct bacterial populations in co-culture via real-time optical density measurements. These measurements can be used to facilitate the analysis of the interaction between microbes that are physically separated by a semipermeable membrane yet able to exchange diffusible molecules. We show that diffusion across the membrane occurs at a sufficient rate to enable effective interaction between physically separate cultures. Two bacterial species commonly found in the cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured to demonstrate how this plate may be implemented to study microbial interactions. We have demonstrated that this novel co-culture device is able to reliably generate real-time measurements of optical density data that can be used to characterize interactions between microbial species.


Subject(s)
Burkholderia cenocepacia/growth & development , Coculture Techniques/instrumentation , Pseudomonas aeruginosa/growth & development , Bacteriological Techniques , Microbial Interactions
5.
PLoS Comput Biol ; 13(3): e1005413, 2017 03.
Article in English | MEDLINE | ID: mdl-28263984

ABSTRACT

Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways/physiology , Metabolome/physiology , Models, Statistical , Algorithms , Computer Simulation , Models, Biological , Reproducibility of Results , Sensitivity and Specificity , Software
6.
PLoS One ; 12(3): e0164919, 2017.
Article in English | MEDLINE | ID: mdl-28319121

ABSTRACT

Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on environmental context. We present a novel workflow for inferring microbial interactions that integrates semi-automated image analysis with a colony stamping mechanism, with the overall effect of improving throughput and reproducibility of colony interaction assays. We apply our approach to infer interactions among bacterial species associated with the normal lung microbiome, and how those interactions are altered by the presence of benzo[a]pyrene, a carcinogenic compound found in cigarettes. We found that the presence of this single compound changed the interaction network, demonstrating that microbial interactions are indeed dynamic and responsive to local chemical context.


Subject(s)
Microbial Interactions/drug effects , Benzo(a)pyrene/toxicity , Benzopyrenes/toxicity , Carcinogens , Cell Culture Techniques , Electronic Data Processing , Haemophilus/cytology , Haemophilus/drug effects , Haemophilus/physiology , Humans , Image Processing, Computer-Assisted , Lung/drug effects , Lung/microbiology , Microbial Interactions/physiology , Microbiota/drug effects , Microbiota/physiology , Microscopy , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/cytology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
7.
ISME J ; 11(2): 426-438, 2017 02.
Article in English | MEDLINE | ID: mdl-27824342

ABSTRACT

The altered Schaedler flora (ASF) is a model microbial community with both in vivo and in vitro relevance. Here we provide the first characterization of the ASF community in vitro, independent of a murine host. We compared the functional genetic content of the ASF to wild murine metagenomes and found that the ASF functionally represents wild microbiomes better than random consortia of similar taxonomic composition. We developed a chemically defined medium that supported growth of seven of the eight ASF members. To elucidate the metabolic capabilities of these ASF species-including potential for interactions such as cross-feeding-we performed a spent media screen and analyzed the results through dynamic growth measurements and non-targeted metabolic profiling. We found that cross-feeding is relatively rare (32 of 3570 possible cases), but is enriched between Clostridium ASF356 and Parabacteroides ASF519. We identified many cases of emergent metabolism (856 of 3570 possible cases). These data will inform efforts to understand ASF dynamics and spatial distribution in vivo, to design pre- and probiotics that modulate relative abundances of ASF members, and will be essential for validating computational models of ASF metabolism. Well-characterized, experimentally tractable microbial communities enable research that can translate into more effective microbiome-targeted therapies to improve human health.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Animals , Bacteria/genetics , Bacteria/growth & development , Culture Media , Gastrointestinal Microbiome/genetics , Host-Pathogen Interactions , Humans , Metagenome , Mice , Models, Biological
8.
Bioinformatics ; 32(6): 867-74, 2016 03 15.
Article in English | MEDLINE | ID: mdl-26568626

ABSTRACT

MOTIVATION: Most microbes on Earth have never been grown in a laboratory, and can only be studied through DNA sequences. Environmental DNA sequence samples are complex mixtures of fragments from many different species, often unknown. There is a pressing need for methods that can reliably reconstruct genomes from complex metagenomic samples in order to address questions in ecology, bioremediation, and human health. RESULTS: We present the SOrting by NEtwork Completion (SONEC) approach for assigning reactions to incomplete metabolic networks based on a metabolite connectivity score. We successfully demonstrate proof of concept in a set of 100 genome-scale metabolic network reconstructions, and delineate the variables that impact reaction assignment accuracy. We further demonstrate the integration of SONEC with existing approaches (such as cross-sample scaffold abundance profile clustering) on a set of 94 metagenomic samples from the Human Microbiome Project. We show that not only does SONEC aid in reconstructing species-level genomes, but it also improves functional predictions made with the resulting metabolic networks. AVAILABILITY AND IMPLEMENTATION: The datasets and code presented in this work are available at: https://bitbucket.org/mattbiggs/sorting_by_network_completion/ CONTACT: papin@virginia.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenomics , Algorithms , Cluster Analysis , Humans , Metabolic Networks and Pathways , Microbiota
9.
PLoS Comput Biol ; 11(5): e1004338, 2015 May.
Article in English | MEDLINE | ID: mdl-26102287

ABSTRACT

We present a novel methodology to construct a Boolean dynamic model from time series metagenomic information and integrate this modeling with genome-scale metabolic network reconstructions to identify metabolic underpinnings for microbial interactions. We apply this in the context of a critical health issue: clindamycin antibiotic treatment and opportunistic Clostridium difficile infection. Our model recapitulates known dynamics of clindamycin antibiotic treatment and C. difficile infection and predicts therapeutic probiotic interventions to suppress C. difficile infection. Genome-scale metabolic network reconstructions reveal metabolic differences between community members and are used to explore the role of metabolism in the observed microbial interactions. In vitro experimental data validate a key result of our computational model, that B. intestinihominis can in fact slow C. difficile growth.


Subject(s)
Clostridioides difficile , Clostridium Infections/microbiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Algorithms , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Clindamycin/chemistry , Coculture Techniques , Computer Simulation , Metabolic Networks and Pathways , Mice , Microbiota
10.
Article in English | MEDLINE | ID: mdl-26109480

ABSTRACT

Genome-scale metabolic network reconstructions and constraint-based analyses are powerful methods that have the potential to make functional predictions about microbial communities. Genome-scale metabolic networks are used to characterize the metabolic functions of microbial communities via several techniques including species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the 'enzyme-soup' approach, multiscale modeling, and others. There are many challenges in the field, including a need for tools that accurately assign high-level omics signals to individual community members, the need for improved automated network reconstruction methods, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be corresponding advances in the fields of ecology, health science, and microbial community engineering.


Subject(s)
Algorithms , Metabolic Engineering , Metabolomics , Microbial Consortia , Models, Biological , Systems Biology
11.
PLoS One ; 8(10): e78011, 2013.
Article in English | MEDLINE | ID: mdl-24147108

ABSTRACT

Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.


Subject(s)
Biofilms/growth & development , Pseudomonas aeruginosa/growth & development , Computer Simulation
12.
Mol Plant Microbe Interact ; 25(8): 1026-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22746823

ABSTRACT

The genetic rules that dictate legume-rhizobium compatibility have been investigated for decades, but the causes of incompatibility occurring at late stages of the nodulation process are not well understood. An evaluation of naturally diverse legume (genus Medicago) and rhizobium (genus Sinorhizobium) isolates has revealed numerous instances in which Sinorhizobium strains induce and occupy nodules that are only minimally beneficial to certain Medicago hosts. Using these ineffective strain-host pairs, we identified gain-of-compatibility (GOC) rhizobial variants. We show that GOC variants arise by loss of specific large accessory plasmids, which we call HR plasmids due to their effect on symbiotic host range. Transfer of HR plasmids to a symbiotically effective rhizobium strain can convert it to incompatibility, indicating that HR plasmids can act autonomously in diverse strain backgrounds. We provide evidence that HR plasmids may encode machinery for their horizontal transfer. On hosts in which HR plasmids impair N fixation, the plasmids also enhance competitiveness for nodule occupancy, showing that naturally occurring, transferrable accessory genes can convert beneficial rhizobia to a more exploitative lifestyle. This observation raises important questions about agricultural management, the ecological stability of mutualisms, and the genetic factors that distinguish beneficial symbionts from parasites.


Subject(s)
Medicago/microbiology , Nitrogen Fixation/genetics , Rhizobium/genetics , Symbiosis/genetics , Gene Transfer, Horizontal , Molecular Sequence Data , Phenotype , Plasmids , Root Nodules, Plant/microbiology , Sinorhizobium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...