Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38399724

ABSTRACT

Understanding how microbial communities survive in extreme environmental pressure is critical for interpreting ecological patterns and microbial diversity. Great Gobi A Strictly Protected Area represents an intriguing model for studying the bacterial community since it is a protected and intact wild area of the Mongolian desert. In this work, the composition of a bacterial community of the soil from four oases was characterized by extracting total DNA and sequencing through the Illumina NovaSeq platform. In addition, the soil's chemical and physical properties were determined, and their influence on shaping the microbial communities was evaluated. The results showed a high variability of bacterial composition among oases. Moreover, combining specific chemical and physical parameters significantly shapes the bacterial community among oases. Data obtained suggested that the oases were highly variable in physiochemical parameters and bacterial communities despite the similar extreme climate conditions. Moreover, core functional microbiome were constituted by aerobic chemoheterotrophy and chemoheterotrophy, mainly contributed by the most abundant bacteria, such as Actinobacteriota, Pseudomonadota, and Firmicutes. This result supposes a metabolic flexibility for sustaining life in deserts. Furthermore, as the inhabitants of the extreme regions are likely to produce new chemical compounds, isolation of key taxa is thus encouraged.

2.
Microorganisms ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838431

ABSTRACT

Spittlebugs are xylem-sap feeding insects that can exploit a nutrient-poor diet, thanks to mutualistic endosymbionts residing in various organs of their body. Although obligate symbioses in some spittlebug species have been quite well studied, little is known about their facultative endosymbionts, especially those inhabiting the gut. Recently, the role played by spittlebugs as vectors of the phytopathogenetic bacterium Xylella fastidiosa aroused attention to this insect group, boosting investigations aimed at developing effective yet sustainable control strategies. Since spittlebug nymphs are currently the main target of applied control, the composition of gut bacterial community of the juveniles of Philaenus spumarius and Lepyronia coleoptrata was investigated using molecular techniques. Moreover, bacteria associated with their froth, sampled from different host plants, were studied. Results revealed that Sodalis and Rickettsia bacteria are the predominant taxa in the gut of P. spumarius and L. coleoptrata nymphs, respectively, while Rhodococcus was found in both species. Our investigations also highlighted the presence of recurring bacteria in the froth. Furthermore, the foam hosted several bacterial species depending on the host plant, the insect species, or on soil contaminant. Overall, first findings showed that nymphs harbor a large and diverse bacterial community in their gut and froth, providing new accounts to the knowledge on facultative symbionts of spittlebugs.

3.
Insect Sci ; 28(4): 874-884, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32519794

ABSTRACT

Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.


Subject(s)
Bacteria , Olea , Pest Control, Biological , Tephritidae/microbiology , Animals , Bacteria/genetics , Bacteria/pathogenicity , Crops, Agricultural , Genes, Bacterial , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Symbiosis
4.
BMC Biotechnol ; 19(Suppl 2): 91, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847839

ABSTRACT

BACKGROUND: The symbiosis between the olive fruit fly, Bactrocera oleae, and Candidatus Erwinia dacicola has been demonstrated as essential for the fly's larval development and adult physiology. The mass rearing of the olive fruit fly has been hindered by several issues, including problems which could be related to the lack of the symbiont, presumably due to preservatives and antibiotics currently used during rearing under laboratory conditions. To better understand the mechanisms underlying symbiont removal or loss during the rearing of lab colonies of the olive fruit fly, we performed experiments that focused on bacterial transfer from wild female flies to their eggs. In this research, eggs laid by wild females were treated with propionic acid solution, which is often used as an antifungal agent, a mixture of sodium hypochlorite and Triton X, or water (as a control). The presence of the bacterial symbiont on eggs was evaluated by real-time PCR and scanning electron microscopy. RESULTS: DGGE analysis showed a clear band with the same migration behavior present in all DGGE profiles but with a decreasing intensity. Molecular analyses performed by real-time PCR showed a significant reduction in Ca. E. dacicola abundance in eggs treated with propionic acid solution or a mixture of sodium hypochlorite and Triton X compared to those treated with water. In addition, the removal of bacteria from the surfaces of treated eggs was highlighted by scanning electron microscopy. CONCLUSIONS: The results clearly indicate how the first phases of the colony-establishment process are important in maintaining the symbiont load in laboratory populations and suggest that the use of products with antimicrobial activity should be avoided. The results also suggest that alternative rearing procedures for the olive fruit fly should be investigated.


Subject(s)
Erwinia/isolation & purification , Olea/parasitology , Tephritidae/physiology , Animals , Erwinia/genetics , Female , Male , Microscopy, Electron, Scanning , Octoxynol/chemistry , Ovum/drug effects , Ovum/microbiology , Propionates/pharmacology , Real-Time Polymerase Chain Reaction , Sexual Behavior, Animal , Sodium Hypochlorite/chemistry , Sodium Hypochlorite/pharmacology , Symbiosis , Tephritidae/microbiology
5.
BMC Biotechnol ; 19(Suppl 2): 93, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847845

ABSTRACT

BACKGROUND: The olive fly, Bactrocera oleae, is the most important insect pest in olive production, causing economic damage to olive crops worldwide. In addition to extensive research on B. oleae control methods, scientists have devoted much effort in the last century to understanding olive fly endosymbiosis with a bacterium eventually identified as Candidatus Erwinia dacicola. This bacterium plays a relevant role in olive fly fitness. It is vertically transmitted, and it benefits both larvae and adults in wild populations; however, the endosymbiont is not present in lab colonies, probably due to the antibiotics and preservatives required for the preparation of artificial diets. Endosymbiont transfer from wild B. oleae populations to laboratory-reared ones allows olive fly mass-rearing, thus producing more competitive flies for future Sterile Insect Technique (SIT) applications. RESULTS: We tested the hypothesis that Ca. E. dacicola might be transmitted from wild, naturally symbiotic adults to laboratory-reared flies. Several trials have been performed with different contamination sources of Ca. E. dacicola, such as ripe olives and gelled water contaminated by wild flies, wax domes containing eggs laid by wild females, cages dirtied by faeces dropped by wild flies and matings between lab and wild adults. PCR-DGGE, performed with the primer set 63F-GC/518R, demonstrated that the transfer of the endosymbiont from wild flies to lab-reared ones occurred only in the case of cohabitation. CONCLUSIONS: Cohabitation of symbiotic wild flies and non-symbiotic lab flies allows the transfer of Ca. E. dacicola through adults. Moreover, PCR-DGGE performed with the primer set 63F-GC/518R was shown to be a consistent method for screening Ca. E. dacicola, also showing the potential to distinguish between the two haplotypes (htA and htB). This study represents the first successful attempt at horizontal transfer of Ca. E. dacicola and the first step in acquiring a better understanding of the endosymbiont physiology and its relationship with the olive fly. Our research also represents a starting point for the development of a laboratory symbiotic olive fly colony, improving perspectives for future applications of the Sterile Insect Technique.


Subject(s)
Animals, Laboratory/microbiology , Erwinia/isolation & purification , Olea/parasitology , Tephritidae/physiology , Animals , Animals, Laboratory/growth & development , DNA, Bacterial/genetics , Erwinia/genetics , Female , Insect Control , Larva/growth & development , Larva/microbiology , Male , Sexual Behavior, Animal , Symbiosis , Tephritidae/growth & development , Tephritidae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...