Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 123(13): 8463-8468, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-31057689

ABSTRACT

Surface X-ray diffraction has been employed to quantitatively determine the geometric structure of an X-ray-induced superhydrophilic rutile-TiO2(110)(1 × 1) surface. A scatterer, assumed to be oxygen, is found at a distance of 1.90 ± 0.02 Å above the five-fold-coordinated surface Ti atom, indicating surface hydroxylation. Two more oxygen atoms, situated further from the substrate, are also included to achieve the optimal agreement between experimental and simulated diffraction data. It is concluded that these latter scatterers are from water molecules, surface-localized through hydrogen bonding. Comparing this interfacial structure with previous studies suggests that the superhydophilicity of titania is most likely to be a result of the depletion of surface carbon contamination coupled to extensive surface hydroxylation.

2.
Soft Matter ; 13(43): 7848-7855, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-28976532

ABSTRACT

The surface properties of polyelectrolyte multilayers (PEMs) obtained via sequential adsorption of oppositely charged polyions from their solutions and used as cushions for supported lipid bilayers were investigated. Five types of polyelectrolytes were used: cationic polyethyleneimine (PEI), poly(diallyldimethylammonium)chloride (PDADMAC), and poly-l-lysine hydrobromide (PLL); and anionic polysodium 4-styrenesulfonate (PSS) and poly-l-glutamic acid sodium (PGA). The wettability and surface free energy of the PEMs were determined by contact angle measurements using sessile drop analysis. Electrokinetic characterisation of the studied films was performed by streaming potential measurements of selected multilayers and the structure of the polyelectrolyte multilayer was characterized by synchrotron X-ray reflectometry. The examined physicochemical properties of the PEMs were correlated with the kinetics of the formation of supported lipid bilayers atop the PEM cushion.

3.
Nat Mater ; 16(4): 461-466, 2017 04.
Article in English | MEDLINE | ID: mdl-27842073

ABSTRACT

The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.

4.
Rev Sci Instrum ; 86(10): 103901, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520965

ABSTRACT

A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

5.
Phys Rev Lett ; 101(18): 185501, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999837

ABSTRACT

Surface x-ray diffraction has been employed to elucidate the surface structure of the (011)-(2 x 1) termination of rutile TiO2. The data are inconsistent with previously proposed structures. Instead, an entirely unanticipated geometry emerges from the structure determination, which is terminated by zigzag rows of twofold coordinated oxygen atoms asymmetrically bonded to fivefold titanium atoms. The energetic stability of this structure is demonstrated by ab initio total energy calculations.

6.
Nanotechnology ; 19(44): 445501, 2008 Nov 05.
Article in English | MEDLINE | ID: mdl-21832730

ABSTRACT

We report here for the first time the combination of x-ray synchrotron light and a micro-electro-mechanical system (MEMS). We show how it is possible to modulate in real time a MEMS mass distribution to induce a nanometric and tunable mechanical oscillation. The quantitative experimental demonstration we present here uses periodic thermal dilatation of a Ge microcrystal attached to a Si microlever, induced by controlled absorption of an intensity modulated x-ray microbeam. The mechanism proposed can be envisaged either for the detection of small heat flux or for the actuation of a mechanical system.

SELECTION OF CITATIONS
SEARCH DETAIL
...