Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 6(3): 1011-1018, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36791416

ABSTRACT

A detailed insight about the molecular organization behind spider silk assembly is valuable for the decoding of the unique properties of silk. The recombinant partial spider silk protein 4RepCT contains four poly-alanine/glycine-rich repeats followed by an amphiphilic C-terminal domain and has shown the capacity to self-assemble into fibrils on hydrophobic surfaces. We herein use molecular dynamic simulations to address the structure of 4RepCT and its different parts on hydrophobic versus hydrophilic surfaces. When 4RepCT is placed in a wing arrangement model and periodically repeated on a hydrophobic surface, ß-sheet structures of the poly-alanine repeats are preserved, while the CT part is settled on top, presenting a fibril with a height of ∼7 nm and a width of ∼11 nm. Both atomic force microscopy and cryo-electron microscopy imaging support this model as a possible fibril formation on hydrophobic surfaces. These results contribute to the understanding of silk assembly and alignment mechanism onto hydrophobic surfaces.


Subject(s)
Silk , Animals , Silk/chemistry , Cryoelectron Microscopy , Recombinant Proteins/chemistry
3.
J Am Chem Soc ; 143(10): 3830-3845, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33661624

ABSTRACT

Protein tyrosine phosphatases (PTPs) play an important role in cellular signaling and have been implicated in human cancers, diabetes, and obesity. Despite shared catalytic mechanisms and transition states for the chemical steps of catalysis, catalytic rates within the PTP family vary over several orders of magnitude. These rate differences have been implied to arise from differing conformational dynamics of the closure of a protein loop, the WPD-loop, which carries a catalytically critical residue. The present work reports computational studies of the human protein tyrosine phosphatase 1B (PTP1B) and YopH from Yersinia pestis, for which NMR has demonstrated a link between their respective rates of WPD-loop motion and catalysis rates, which differ by an order of magnitude. We have performed detailed structural analysis, both conventional and enhanced sampling simulations of their loop dynamics, as well as empirical valence bond simulations of the chemical step of catalysis. These analyses revealed the key residues and structural features responsible for these differences, as well as the residues and pathways that facilitate allosteric communication in these enzymes. Curiously, our wild-type YopH simulations also identify a catalytically incompetent hyper-open conformation of its WPD-loop, sampled as a rare event, previously only experimentally observed in YopH-based chimeras. The effect of differences within the WPD-loop and its neighboring loops on the modulation of loop dynamics, as revealed in this work, may provide a facile means for the family of PTP enzymes to respond to environmental changes and regulate their catalytic activities.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Allosteric Regulation , Biocatalysis , Catalytic Domain , Humans , Kinetics , Molecular Dynamics Simulation , Protein Stability , Protein Structure, Tertiary , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Thermodynamics
4.
RSC Adv ; 11(45): 27868-27879, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480736

ABSTRACT

Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure-function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11-20 of the protein ß-lactoglobulin (ß-LG11-20), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of 13C and 15N resonances in the solid-state NMR spectra for the ß-LG11-20 fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the ß-LG11-20 fibrils were probed using NMR experiments of the peptide with 13C- and 15N-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel ß-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel ß-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible.

5.
J Am Chem Soc ; 142(47): 20216-20231, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33180505

ABSTRACT

Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity, and selectivity of this enzyme are only poorly understood to date, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the nonconverted or poorly converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering.


Subject(s)
Bacterial Proteins/chemistry , Carboxy-Lyases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Bordetella/enzymology , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Catalytic Domain , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Quantum Theory , Thermodynamics
6.
Adv Funct Mater ; 30(28): 1910562, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32684903

ABSTRACT

The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from trans-Pt(PEt3)2(C≡C-C6H5-C≡N)(C≡C-C6H5-COO-Cholesterol), are described and designated as PE1-CN-Chol. Polarized optical microscopy, differential scanning calorimetry, and wide-angle X-ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase. Cooling to room temperature leads to the formation of a cholesteric liquid crystal glass. Scanning tunneling microscopy of a PE1-CN-Chol monolayer reveals self-assembly at the solid-liquid interface with an array of two molecules arranged in pairs, oriented head-to-head through the CN groups, giving rise to a lamella arrangement. The lamella structure obtained from molecular dynamics calculations shows a clear phase separation between the conjugated platinum acetylide and the hydrophobic cholesterol moiety with the lamellae separation distance being 4.0 nm. Ultrafast transient absorption and flash photolysis spectra of the glass show intersystem crossing to the triplet state occurring within 100 ps following excitation. The triplet decay time of the film compared to aerated and deoxygenated solutions is consistent with oxygen quenching at the film surface but not within the film. The high chromophore concentration, high glass thermal stability, and long triplet lifetime in air show that these materials have potential as nonlinear absorbing materials.

7.
Free Radic Biol Med ; 143: 240-251, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31381971

ABSTRACT

Quercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g. dihydroquercetin (taxifolin). To provide direct evidence about the mechanism of quercetin oxidation, we employed selective alkylation procedures for the step-by-step blocking of individual redox active sites, i.e. the catechol, resorcinol and enol C-3 hydroxyls, as represented by newly prepared quercetin derivatives 1-3. Based on the structure-activity relationship (SAR), electrochemical, and computational (density functional theory) studies, we can clearly confirm that quercetin is oxidized in the following steps: the catechol moiety is oxidized first, forming the benzofuranone derivative via intramolecular rearrangement mechanism; therefore the quercetin C-3 hydroxy group cannot be involved in further oxidation reactions or other biochemical processes. The benzofuranone is oxidized subsequently, followed by oxidation of the resorcinol motif to complete the electrochemical cascade of reactions. Derivatization of individual quercetin hydroxyls has a significant effect on its redox behavior, and, importantly, on its antiradical and stability properties, as shown in DPPH/ABTS radical scavenging assays and UV-Vis spectrophotometry, respectively. The SAR data reported here are instrumental for future studies on the oxidation of biologically or technologically important flavonoids and other polyphenols or polyhydroxy substituted aromatics. This is the first complete and direct study mapping redox properties of individual moieties in quercetin structure.


Subject(s)
Antioxidants/chemistry , Free Radical Scavengers/chemistry , Quercetin/chemistry , Oxidation-Reduction , Structure-Activity Relationship
8.
Phys Chem Chem Phys ; 21(4): 2069-2079, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30638230

ABSTRACT

Despite being very well established in the field of electro-optics, ferroelectric liquid crystals so far lacked interest from a ferroelectric device perspective due to a typically high operating temperature, a modest remnant polarization and/or poor polarization retention. Here, we experimentally demonstrate how simple structural modification of a prototypical ferroelectric liquid-crystal benzene-1,3,5-trisamide (BTA) - introduction of branched-tail substituents - results in materials with a wide operating temperature range and a data retention time of more than 10 years in thin-film solution-processed capacitor devices at room temperature. The observed differences between linear- and branched-tail compounds are analyzed using density functional theory (DFT) and molecular dynamics (MD) simulations. We conclude that morphological factors like improved packing quality and reduced disorder, rather than electrostatic interactions or intra/inter-columnar steric hindrance, underlay the superior properties of the branched-tailed BTAs. Synergistic effects upon blending of compounds with branched and linear side-chains can be used to further improve the materials' characteristics.

9.
Phys Chem Chem Phys ; 21(3): 1375-1383, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30601493

ABSTRACT

Ferroelectrics find broad applications, e.g. in non-volatile memories, but the switching kinetics in real, disordered, materials is still incompletely understood. Here, we develop an electrostatic model to study ferroelectric switching using 3D Monte Carlo simulations. We apply this model to the prototypical small molecular ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA) and find good agreement between the Monte Carlo simulations, experiments, and molecular dynamics studies. Since the model lacks any explicit steric effects, we conclude that these are of minor importance. While the material is shown to have a frustrated antiferroelectric ground state, it behaves as a normal ferroelectric under practical conditions due to the large energy barrier for switching that prevents the material from reaching its ground state after poling. We find that field-driven polarization reversal and spontaneous depolarization have orders of magnitude different switching kinetics. For the former, which determines the coercive field and is relevant for data writing, nucleation occurs at the electrodes, whereas for the latter, which governs data retention, nucleation occurs at disorder-induced defects. As a result, by reducing the disorder in the system, the polarization retention time can be increased dramatically while the coercive field remains unchanged.

10.
Phys Chem Chem Phys ; 21(7): 3637-3643, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30379159

ABSTRACT

DNA binding modes of the stereoisomeric rotamers of two dithenylethene derivatives (DTE1 and DTE2) representing candidate molecular photoswitches of great promise for photopharmacology and nanotechnology have been identified and characterized in terms of their binding energies and electronic circular dichroism (CD) responses. In the open form, two binding modes are identified namely minor-groove binding of the lowest-energy conformer with an anti-parallel arrangement of methyl groups and major-groove double-intercalation of the P-enantiomers of an intermediate-state rotamer. Only the latter binding mode is found to be enantiomerically selective and expected to have an overall negative linear dichroism (LD) as observed in the experiment for DTE1 (Angew. Chem., Int. Ed., 2013, 52, 4393). In the closed form, the most favorable binding mode is found to be minor groove binding. Also this binding mode is found to be enantiomerically selective and for DTE1, it is the M-enantiomer that binds the strongest, showing a positive theoretical signature CD band in the long wavelength region with origin in pyridinium ligands. The theoretical CD spectrum is found to be in good agreement with the experimental one, which provides an indirect evidence for a correct identification of the binding mode in the closed form.


Subject(s)
Circular Dichroism , DNA/chemistry , Ethylenes/chemistry , Molecular Dynamics Simulation
11.
Phys Chem Chem Phys ; 19(39): 26870-26879, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28952614

ABSTRACT

This study is focused on eight structurally analogous natural flavonoids that exhibit a wide range of biological activities, which are of interest in pharmacy, cosmetics and the food industry. Using both experimental and theoretical approaches, we relate their fundamental physico-chemical properties to the structural motifs, with particular focus on UV/Vis absorption properties and pH dependence. We highlight the role of the C2-C3 double bond, whose presence or absence is responsible for the switch between absorption bands in the UVB and UVA regions, which is rationalized by strong modification of the involved molecular orbitals. After deprotonation in an alkaline environment, a typical switch in intensity at the maximum absorption wavelength (λmax) is observed enabling the calculation of pKa values for compounds with a C2-C3 single bond, whereas a bathochromic shift of λmaxvs. pH is observed for the C2-C3 double bond containing compounds. These behaviors are also rationalized and understood by MO analysis. Interestingly, high pH (above 11 for ampelopsin and above 9 for myricetin) induces the formation of a long-wavelength peak arising from double and/or triple deprotonation. Substitution at position C3 by the OH group has almost no effect on λmax for taxifolin and eriodictyol, whereas the effect is larger for quercetin and luteolin. An additional sugar moiety at C3 has a stabilizing effect and induces only minor changes in spectral behavior.

12.
Biochimie ; 138: 56-61, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28435145

ABSTRACT

Na+/K+-ATPase (NKA) is an enzyme of crucial importance for all animal cells. We examined the inhibitory effects of halogenated phenylquinolinones on NKA. The 5,6,7,8-tetrafluoro-3-hydroxy-2-phenylquinolin-4(1H)-one (TFHPQ) was identified as an efficient NKA inhibitor with IC50 near 10 µM. The inhibition by TFHPQ is particularly efficient at higher concentrations of K+, where NKA adopts the E2 conformation. The experimental observations are in a good agreement with the outcomes from molecular docking. We identified an energetically favourable TFHPQ binding site for the K+-bound NKA, which is located in the proximity of the cytoplasmic C-terminus.


Subject(s)
Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Quinolones/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Animals , Binding Sites , Enzyme Inhibitors/chemistry , Protein Structure, Tertiary , Quinolones/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Swine/metabolism
13.
Eur J Med Chem ; 127: 263-274, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28068598

ABSTRACT

A series of antioxidants was designed and synthesized based on conjugation of the hepatoprotective flavonolignan silybin with l-ascorbic acid, trolox alcohol or tyrosol via a C12 aliphatic linker. These hybrid molecules were prepared from 12-vinyl dodecanedioate-23-O-silybin using the enzymatic regioselective acylation procedure with Novozym 435 (lipase B) or with lipase PS. Voltammetric analyses showed that the silybin-ascorbic acid conjugate exhibited excellent electron donating ability, in comparison to the other conjugates. Free radical scavenging, antioxidant activities and cytoprotective action were evaluated. The silybin-ascorbic acid hybrid exhibited the best activities (IC50 = 30.2 µM) in terms of lipid peroxidation inhibition. The promising protective action of the conjugate against lipid peroxidation can be attributed to modulated electron transfer abilities of both the silybin and ascorbate moieties, but also to the hydrophobic C12 linker facilitating membrane insertion. This was supported experimentally and theoretically by density functional theory (DFT) and molecular dynamics (MD) calculations. The results presented here can be used in the further development of novel multipotent antioxidants and cytoprotective agents, in particular for substances acting at an aqueous/lipid interface.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Flavonolignans/chemistry , Flavonolignans/pharmacology , Lipase/metabolism , Antioxidants/metabolism , Cell Membrane/metabolism , Cytoprotection/drug effects , Electron Transport , Enzymes, Immobilized , Flavonolignans/metabolism , Fungal Proteins , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Liver/cytology , Liver/drug effects , Liver/metabolism , Molecular Conformation , Molecular Dynamics Simulation , Silybin , Silymarin/chemistry
14.
Int J Mol Sci ; 17(11)2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27827954

ABSTRACT

The physicochemical properties of the wine pigments catechyl-pyranomalvidin-3-O-glucoside (PA1) and guaiacyl-pyranomalvidin-3-O-glucoside (PA2) are extensively revisited using ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and quantum chemistry density functional theory (DFT) calculations. In mildly acidic aqueous solution, each cationic pigment undergoes regioselective deprotonation to form a single neutral quinonoid base and water addition appears negligible. Above pH = 4, both PA1 and PA2 become prone to aggregation, which is manifested by the slow build-up of broad absorption bands at longer wavelengths (λ ≥ 600 nm), followed in the case of PA2 by precipitation. Some phenolic copigments are able to inhibit aggregation of pyranoanthocyanins (PAs), although at large copigment/PA molar ratios. Thus, chlorogenic acid can dissociate PA1 aggregates while catechin is inactive. With PA2, both chlorogenic acid and catechin are able to prevent precipitation but not self-association. Calculations confirmed that the noncovalent dimerization of PAs is stronger with the neutral base than with the cation and also stronger than π-π stacking of PAs to chlorogenic acid (copigmentation). For each type of complex, the most stable conformation could be obtained. Finally, PA1 can also bind hard metal ions such as Al3+ and Fe3+ and the corresponding chelates are less prone to self-association.


Subject(s)
Anthocyanins/chemistry , Iron Chelating Agents/chemistry , Pigments, Biological/chemistry , Protons , Wine/analysis , Aluminum/chemistry , Catechin/chemistry , Chemical Precipitation , Chlorogenic Acid/chemistry , Color , Dimerization , Hydrogen-Ion Concentration , Iron/chemistry , Molecular Conformation , Quantum Theory , Stereoisomerism , Thermodynamics
15.
Front Physiol ; 7: 115, 2016.
Article in English | MEDLINE | ID: mdl-27065883

ABSTRACT

We examined the inhibitory effects of three flavonolignans and their dehydro- derivatives, taxifolin and quercetin on the activity of the Na(+)/K(+)-ATPase (NKA). The flavonolignans silychristin, dehydrosilychristin and dehydrosilydianin inhibited NKA with IC50 of 110 ± 40 µM, 38 ± 8 µM, and 36 ± 14 µM, respectively. Using the methods of molecular modeling, we identified several possible binding sites for these species on NKA and proposed the possible mechanisms of inhibition. The binding to the extracellular- or cytoplasmic C-terminal sites can block the transport of cations through the plasma membrane, while the binding on the interface of cytoplasmic domains can inhibit the enzyme allosterically. Fluorescence spectroscopy experiments confirmed the interaction of these three species with the large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45). The flavonolignans are distinct from the cardiac glycosides that are currently used in NKA treatment. Because their binding sites are different, the mechanism of inhibition is different as well as the range of active concentrations, one can expect that these new NKA inhibitors would exhibit also a different biomedical actions than cardiac glycosides.

16.
Free Radic Biol Med ; 90: 114-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582372

ABSTRACT

The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.


Subject(s)
Antioxidants/pharmacology , Cytoprotection , Flavonolignans/pharmacology , Animals , Electron Spin Resonance Spectroscopy , Flavonolignans/chemistry , Hep G2 Cells , Humans , Male , Rats , Silybin , Silymarin/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...