Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Signal ; 116: 111056, 2024 04.
Article in English | MEDLINE | ID: mdl-38262555

ABSTRACT

Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.


Subject(s)
Receptor, Angiotensin, Type 1 , Urotensins , Humans , Angiotensin II , HEK293 Cells
2.
Biochem Pharmacol ; 211: 115485, 2023 05.
Article in English | MEDLINE | ID: mdl-36889446

ABSTRACT

The urotensinergic system, involved in the development and/or progression of numerous pathological conditions, is composed of one G protein-coupled receptor (UT) and two endogenous ligands known as urotensin II (UII) and urotensin II-related peptide (URP). These two structurally related hormones, which exert common and divergent effects, are thought to play specific biological roles. In recent years, we have characterized an analog termed urocontrin A (UCA), i.e. [Pep4]URP, which is capable of discriminating the effects of UII from URP. Such an action could allow the delineation of the respective functions of these two endogenous ligands. In an effort to define the molecular determinants involved in this behavior and to improve the pharmacological profile of UCA, we introduced modifications from urantide, considered for some time as a lead compound for the development of UT antagonists, into UCA and assessed the binding, contractile activity and G protein signaling of these newly developed compounds. Our results show that UCA and its derivatives exert probe-dependent effects on UT antagonism, and we have further identified [Pen2, Pep4]URP as a Gq biased ligand with an insurmountable antagonism in our aortic ring contraction assay.


Subject(s)
Peptide Hormones , Urotensins , Ligands , Urotensins/pharmacology , Urotensins/metabolism , Peptide Hormones/chemistry , Peptide Hormones/metabolism , Peptide Hormones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
3.
J Biol Chem ; 297(3): 101057, 2021 09.
Article in English | MEDLINE | ID: mdl-34389356

ABSTRACT

Over the last decade, the urotensinergic system, composed of one G protein-coupled receptor and two endogenous ligands, has garnered significant attention as a promising new target for the treatment of various cardiovascular diseases. Indeed, this system is associated with various biomarkers of cardiovascular dysfunctions and is involved in changes in cardiac contractility, fibrosis, and hypertrophy contributing, like the angiotensinergic system, to the pathogenesis and progression of heart failure. Significant investment has been made toward the development of clinically relevant UT ligands for therapeutic intervention, but with little or no success to date. This system therefore remains to be therapeutically exploited. Pepducins and other lipidated peptides have been used as both mechanistic probes and potential therapeutics; therefore, pepducins derived from the human urotensin II receptor might represent unique tools to generate signaling bias and study hUT signaling networks. Two hUT-derived pepducins, derived from the second and the third intracellular loop of the receptor (hUT-Pep2 and [Trp1, Leu2]hUT-Pep3, respectively), were synthesized and pharmacologically characterized. Our results demonstrated that hUT-Pep2 and [Trp1, Leu2]hUT-Pep3 acted as biased ago-allosteric modulators, triggered ERK1/2 phosphorylation and, to a lesser extent, IP1 production, and stimulated cell proliferation yet were devoid of contractile activity. Interestingly, both hUT-derived pepducins were able to modulate human urotensin II (hUII)- and urotensin II-related peptide (URP)-mediated contraction albeit to different extents. These new derivatives represent unique tools to reveal the intricacies of hUT signaling and also a novel avenue for the design of allosteric ligands selectively targeting hUT signaling potentially.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Peptide Hormones/metabolism , Peptides/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Allosteric Regulation , Cell Proliferation , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Ligands , Peptide Hormones/chemistry , Peptide Hormones/genetics , Peptides/chemistry , Protein Conformation, alpha-Helical , Receptors, G-Protein-Coupled/genetics , Signal Transduction
4.
ACS Med Chem Lett ; 11(9): 1717-1722, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32944139

ABSTRACT

In the past few years, we have identified two allosteric modulators of the urotensinergic system with probe-dependent action, termed Urocontrin (UC) and Urocontrin A (UCA). Such action is atypical and important since it will allow us to understand the specific function of the functionally selective cognate ligands of this system, namely urotensin II and urotensin II-related peptide. Delineating the molecular determinants involved in this particular behavior would represent an important step toward designing small molecules suitable for pharmacologic and/or therapeutic intervention. Hence, we undertook an exploratory research by replacing the Trp4 residue of URP with several para-substituted phenylalanine amino acids in order to get a grasp on the required nature, distance, and orientation of the side chain of this residue for allosteric modulatory action. We found that the position of the second aromatic group is crucial, and we identified two new allosteric modulators: [Trip4]URP and [Phe(pPy-4)4]URP with probe-dependent action.

5.
J Med Chem ; 62(3): 1455-1467, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30615452

ABSTRACT

In accordance with their common but also divergent physiological actions, human urotensin II (1) and urotensin II-related peptide (2) could stabilize specific urotensin II receptor (UTR) conformations, thereby activating different signaling pathways, a feature referred to as biased agonism or functional selectivity. Sequential N-methylation of the amides in the conserved core sequence of 1, 2, and fragment U-II4-11 (3) shed light on structural requirements involved in their functional selectivity. Thus, 18 N-methylated UTR ligands were synthesized and their biological profiles evaluated using in vitro competition binding assays, ex vivo rat aortic ring bioassays and BRET-based biosensor experiments. Biological activity diverged from that of the parent structures contingent on the location of amide methylation, indicating relevant hydrogen-bond interactions for the function of the endogenous peptides. Conformational analysis of selected N-methyl analogs indicated the importance of specific amide residues of 2 for the distinct pharmacology relative to 1 and 3.


Subject(s)
Intracellular Signaling Peptides and Proteins/pharmacology , Peptide Hormones/pharmacology , Urotensins/pharmacology , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemical synthesis , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Male , Methylation , Nuclear Magnetic Resonance, Biomolecular , Peptide Hormones/chemical synthesis , Peptide Hormones/metabolism , Protein Conformation , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Urotensins/chemical synthesis , Urotensins/metabolism
6.
J Med Chem ; 61(19): 8707-8716, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30183282

ABSTRACT

Urotensin II (UII) and urotensin II-related peptide (URP) are functionally selective, suggesting that these two hormones might play distinct physiological role through different interactions with their cognate receptor UT. Hypothesizing that the Phe3 residue of URP, which is also present in UII, is a key-element of its specific UT activation, we evaluated the impact of its replacement by non-natural amino acids in URP. Each compound was evaluated for its ability to bind UT, induce rat aortic ring contraction, and activate Gq, G12, and ß-arrestin 1 signaling pathways. Such modifications impaired contractile efficacy, reflected by a reduced aptitude to activate G12 in URP but not in the truncated but equipotent UII4-11. Moreover, we have identified two structurally different UT modulators: [d-Phe(pI)3]URP and [Bip3]URP, which exert a probe-dependent action against UII and URP. These compounds should help us understand the specific roles of these hormones as well as guide further therapeutic development.


Subject(s)
Aorta/physiology , Drug Discovery , Intracellular Signaling Peptides and Proteins/pharmacology , Peptide Hormones/pharmacology , Phenylalanine/metabolism , Urotensins/pharmacology , Vasoconstriction/physiology , Allosteric Regulation , Animals , Aorta/drug effects , Arrestin/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Peptide Hormones/chemistry , Phenylalanine/chemistry , Rats , Receptors, G-Protein-Coupled/metabolism , Vasoconstriction/drug effects
7.
J Med Chem ; 60(23): 9838-9859, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29131958

ABSTRACT

Benzotriazepin-2-ones were designed to mimic the suggested bioactive γ-turn conformation of the Bip-Lys-Tyr tripeptide in Urocontrin ([Bip4]URP), which modulates the urotensin II receptor (UT) and differentiates the effects of the endogenous ligands urotensin II (UII) and urotensin II-related peptide (URP). Twenty-six benzotriazepin-2-ones were synthesized by acylation of anthranilate-derived amino ketones with an aza-glycine equivalent, chemoselective nitrogen functionalization, and ring closure. Several mimics exhibited selective modulatory effects on hUII- and URP-associated vasoconstriction in an ex vivo rat aortic ring bioassay. The C5 p-hydroxyphenethenyl benzotriazepin-2-one 20g decreased hUII potency and efficacy without changing URP induced vasoconstriction. Its saturated phenethyl counterpart 23g decreased URP potency without influencing hUII-mediated contraction. To our knowledge, 20g and 23g represent the first achiral molecules that modulate selectively hUII and URP biological activities. Effectively synthesized, benzotriaepin-2-one turn mimics offer the potential to differentiate the respective roles, signaling pathways, and phenotypic outcomes of hUII and URP in the UT system.


Subject(s)
Benzazepines/chemistry , Benzazepines/pharmacology , Drug Design , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Vasoconstriction/drug effects , Animals , Aorta/drug effects , Aorta/physiology , Benzazepines/chemical synthesis , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Male , Peptide Hormones/antagonists & inhibitors , Peptide Hormones/metabolism , Rats , Rats, Sprague-Dawley
8.
Biochem Pharmacol ; 144: 100-107, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28784291

ABSTRACT

While sharing common biological activity, the two endogenous ligands of the G protein-coupled receptor UT, e.g. urotensin II (UII) and urotensin II-related peptide (URP), also exhibit distinct effects that could be explained by distinct interactions with their cognate receptor (UT). Accordingly, introduction of a similar substitution at the intracyclic Tyr residue in UII and URP led to compounds with divergent pharmacologic profiles. Hypothesizing that the Tyr6 residue of URP is a key-element to understand the specific activation of UT by URP, we undertook a study of the structure-activity relationship in which this particular residue was replaced by non-natural and constrained amino acids. Each compound was evaluated for its ability to bind UT, to induce rat aortic ring contraction and to activate Gq and G12 signaling pathways. We identified [Pep6]URP, that binds UT with an affinity similar to that of URP, but behaves as a biased ligand. Used as an antagonist, this peptide is also able to selectively reduce the maximal aortic contraction of URP but not UII. Our results suggest that the orientation of the Tyr residue can stabilize at least two different conformations of UT, leading to biased signaling and a probe-dependent allosteric effect.


Subject(s)
Aorta, Thoracic/metabolism , Peptide Hormones/metabolism , Tyrosine/metabolism , Urotensins/metabolism , Animals , Aorta, Thoracic/drug effects , Binding Sites/physiology , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Peptide Hormones/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Vasoconstriction/drug effects , Vasoconstriction/physiology
9.
Bioorg Med Chem Lett ; 27(15): 3412-3416, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28625362

ABSTRACT

A novel approach for the synthesis of head-to-tail cyclic peptides has been developed and used to prepare two mimics of the urotensin II-related peptide (URP) cyclic core. Mimics 1 and 2 (c[Trp-Lys-Tyr-Gly-ψ(triazole)-Gly] and c[Phe-Trp-Lys-Tyr-Gly-ψ(triazole)-Gly]) were respectively prepared using a combination of solid- and solution-phase synthesis. The silyl-based alkyne-modifying (SAM) linker enabled installation of C-terminal alkyne and N-terminal azide moieties onto linear peptide precursors, which underwent head-to-tail copper-catalyzed azide-alkyne cycloaddition (CuAAC) in solution. In an aortic ring contraction assay, neither 1 nor 2 exhibited agonist activity; however, both inhibited selectively URP- but not UII-mediated vasoconstriction. The core phenylalanine residue was shown to be important for enhancing modulatory activity of the urotensinergic system.


Subject(s)
Peptides, Cyclic/chemical synthesis , Urotensins/chemical synthesis , Amides/chemical synthesis , Amides/chemistry , Molecular Conformation , Peptides, Cyclic/chemistry , Urotensins/chemistry
10.
J Med Chem ; 59(10): 4740-52, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27140209

ABSTRACT

Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.


Subject(s)
Aorta/drug effects , Urotensins/chemical synthesis , Urotensins/pharmacology , Animals , Aorta/metabolism , CHO Cells , Cells, Cultured , Cricetulus , Humans , Male , Rats , Rats, Sprague-Dawley , Urotensins/chemistry
11.
Oncotarget ; 6(38): 40970-80, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26543238

ABSTRACT

Galectins are small soluble lectins that bind α-galactosides via their carbohydrate recognition domain (CRD). Their ability to dimerize is critical for the crosslinking of glycoprotein receptors and subsequent cellular signaling. This is particularly important in their immunomodulatory role via the induction of T-cell apoptosis. Because galectins play a central role in many pathologies, including cancer, they represent valuable therapeutic targets. At present, most inhibitors have been directed towards the CRD, a challenging task in terms of specificity given the high structural homology of the CRD among galectins. Such inhibitors are not effective at targeting CRD-independent functions of galectins. Here, we report a new class of galectin inhibitors that specifically binds human galectin-7 (hGal-7), disrupts the formation of homodimers, and inhibits the pro-apoptotic activity of hGal-7 on Jurkat T cells. In addition to representing a new means to achieve specificity when targeting galectins, such inhibitors provide a promising alternative to more conventional galectin inhibitors that target the CRD with soluble glycans or other small molecular weight allosteric inhibitors.


Subject(s)
Drug Design , Galectins/antagonists & inhibitors , Peptides/pharmacology , Protein Multimerization/drug effects , Amino Acid Sequence , Amino Acid Substitution , Apoptosis/drug effects , Blotting, Western , Galectins/chemistry , Galectins/genetics , Humans , Jurkat Cells , Models, Molecular , Peptides/chemical synthesis , Protein Binding , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL