Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Control Release ; 370: 614-625, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38729436

ABSTRACT

Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.

3.
Adv Mater ; : e2313226, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419362

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.

4.
Nat Biomed Eng ; 8(5): 513-528, 2024 May.
Article in English | MEDLINE | ID: mdl-38378820

ABSTRACT

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a 'switchable T cell nanoengager' elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release syndrome and neurotoxicity. Supramolecular chemistry may be further leveraged to control the anti-tumour activity and off-tumour toxicity of bispecific antibodies.


Subject(s)
Amantadine , Antibodies, Bispecific , CD3 Complex , T-Lymphocytes , Animals , Humans , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Mice , CD3 Complex/immunology , Amantadine/pharmacology , Cell Line, Tumor , Female , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy
5.
Adv Drug Deliv Rev ; 207: 115194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342243

ABSTRACT

Autoimmune disorders have risen to be among the most prevalent chronic diseases across the globe, affecting approximately 5-7% of the population. As autoimmune diseases steadily rise in prevalence, so do the number of potential therapeutic strategies to combat them. In recent years, fundamental research investigating autoimmune pathologies has led to the emergence of several cellular targets that provide new therapeutic opportunities. However, key challenges persist in terms of accessing and specifically combating the dysregulated, self-reactive cells while avoiding systemic immune suppression and other off-target effects. Fortunately, the continued advancement of nanomedicines may provide strategies to address these challenges and bring innovative autoimmunity therapies to the clinic. Through precise engineering and rational design, nanomedicines can possess a variety of physicochemical properties, surface modifications, and cargoes, allowing for specific targeting of therapeutics to pathological cell and organ types. These advances in nanomedicine have been demonstrated in cancer therapies and have the broad potential to advance applications in autoimmunity therapies as well. In this review, we focus on leveraging the power of nanomedicine for prevalent autoimmune disorders throughout the body. We expand on three key areas for the development of autoimmunity therapies - avoiding systemic immunosuppression, balancing interactions with the immune system, and elevating current platforms for delivering complex cargoes - and emphasize how nanomedicine-based strategies can overcome these barriers and enable the development of next-generation, clinically relevant autoimmunity therapies.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Nanomedicine , Autoimmunity , Autoimmune Diseases/drug therapy , Immune System/pathology , Immunosuppression Therapy , Neoplasms/drug therapy , Neoplasms/pathology
6.
Theranostics ; 14(1): 1-16, 2024.
Article in English | MEDLINE | ID: mdl-38164140

ABSTRACT

Lipid nanoparticles (LNPs) have emerged as a viable, clinically-validated platform for the delivery of mRNA therapeutics. LNPs have been utilized as mRNA delivery systems for applications including vaccines, gene therapy, and cancer immunotherapy. However, LNPs, which are typically composed of ionizable lipids, cholesterol, helper lipids, and lipid-anchored polyethylene glycol, often traffic to the liver which limits the therapeutic potential of the platform. Several approaches have been proposed to resolve this tropism such as post-synthesis surface modification or the addition of synthetic cationic lipids. Methods: Here, we present a strategy for achieving extrahepatic delivery of mRNA involving the incorporation of bile acids, a naturally-occurring class of cholesterol analogs, during LNP synthesis. We synthesized a series of bile acid-containing C14-4 LNPs by replacing cholesterol with bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, or lithocholic acid) at various ratios. Results: Bile acid-containing LNPs (BA-LNPs) were able to reduce delivery to liver cells in vitro and improve delivery in a variety of other cell types, including T cells, B cells, and epithelial cells. Our subsequent in vivo screening of selected LNP candidates injected intraperitoneally or intravenously identified a highly spleen tropic BA-LNP: CA-100, a four-component LNP containing cholic acid and no cholesterol. These screens also identified BA-LNP candidates demonstrating promise for other mRNA therapeutic applications such as for gastrointestinal or immune cell delivery. We further found that the substitution of cholic acid for cholesterol in an LNP formulation utilizing a different ionizable lipid, C12-200, also shifted mRNA delivery from the liver to the spleen, suggesting that this cholic acid replacement strategy may be generalizable. Conclusion: These results demonstrate the potential of a four-component BA-LNP formulation, CA-100, for extrahepatic mRNA delivery that could potentially be utilized for a range of therapeutic and vaccine applications.


Subject(s)
Bile Acids and Salts , Nanoparticles , RNA, Messenger/metabolism , Lipids , Cholesterol , Cholic Acids , RNA, Small Interfering/genetics
7.
Small ; 20(11): e2304378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072809

ABSTRACT

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Subject(s)
Nanoparticles , Receptors, Chimeric Antigen , Receptors, Chimeric Antigen/genetics , Liposomes , Transfection , Antibodies , Cell Engineering , RNA, Small Interfering
8.
Nano Lett ; 23(22): 10179-10188, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37906000

ABSTRACT

Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells available in circulation, harvesting and culturing Treg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4+ T cells can result in a Treg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4+ T cells. We successfully engineer CD4+ T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Autoimmunity , Autoimmune Diseases/therapy , Autoimmune Diseases/genetics , Immunosuppressive Agents/therapeutic use , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
9.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37696939

ABSTRACT

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , T-Lymphocytes
10.
Small ; : e2303568, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537704

ABSTRACT

During healthy pregnancy, the placenta develops to allow for exchange of nutrients and oxygen between the mother and the fetus. However, placental dysregulation can lead to several pregnancy disorders, such as preeclampsia and fetal growth restriction. Recently, lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) has been explored as a promising approach to treat these disorders. Here, iterative libraries of LNPs with varied excipient molar ratios are screened in vitro for enhanced mRNA delivery to placental cells with minimal cytotoxicity when compared to an LNP formulation with a standard excipient molar ratio. LNP C5, the top formulation identified by these screens, demonstrates a fourfold increase in mRNA delivery in vitro compared to the standard formulation. Intravenous administration of LNP C5 to pregnant mice achieves improved in vivo placental mRNA delivery compared to the standard formulation and mediates mRNA delivery to placental trophoblasts, endothelial cells, and immune cells. These results identify LNP C5 as a promising optimized LNP formulation for placental mRNA delivery and further validates the design of experiments strategy for LNP excipient optimization to enhance mRNA delivery to cell types and organs of interest.

11.
Adv Healthc Mater ; 12(30): e2301515, 2023 12.
Article in English | MEDLINE | ID: mdl-37602495

ABSTRACT

The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.


Subject(s)
Nanoparticles , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Programmed Cell Death 1 Receptor/genetics , Immune Checkpoint Inhibitors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Cell Engineering , Cell Line, Tumor
12.
ACS Nano ; 17(14): 13594-13610, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37458484

ABSTRACT

Delivery of mRNA-based therapeutics to the perinatal brain holds great potential in treating congenital brain diseases. However, nonviral delivery platforms that facilitate nucleic acid delivery in this environment have yet to be rigorously studied. Here, we screen a diverse library of ionizable lipid nanoparticles (LNPs) via intracerebroventricular (ICV) injection in both fetal and neonatal mice and identify an LNP formulation with greater functional mRNA delivery in the perinatal brain than an FDA-approved industry standard LNP. Following in vitro optimization of the top-performing LNP (C3 LNP) for codelivery of an adenine base editing platform, we improve the biochemical phenotype of a lysosomal storage disease in the neonatal mouse brain, exhibit proof-of-principle mRNA brain transfection in vivo in a fetal nonhuman primate model, and demonstrate the translational potential of C3 LNPs ex vivo in human patient-derived brain tissues. These LNPs may provide a clinically translatable platform for in utero and postnatal mRNA therapies including gene editing in the brain.


Subject(s)
Brain Diseases , Nanoparticles , Mice , Humans , Animals , Gene Editing , Lipids , Liposomes , RNA, Messenger/genetics , RNA, Small Interfering/genetics
13.
ACS Appl Mater Interfaces ; 15(18): 21877-21892, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37115558

ABSTRACT

Mutated RAS proteins are potent oncogenic drivers and have long been considered "undruggable". While RAS-targeting therapies have recently shown promise, there remains a clinical need for RAS inhibitors with more diverse targets. Small proteins represent a potential new therapeutic option, including K27, a designed ankyrin repeat protein (DARPin) engineered to inhibit RAS. However, K27 functions intracellularly and is incapable of entering the cytosol on its own, currently limiting its utility. To overcome this barrier, we have engineered a lipid nanoparticle (LNP) platform for potent delivery of functional K27-D30─a charge-modified version of the protein─intracellularly in vitro and in vivo. This system efficiently encapsulates charge-modified proteins, facilitates delivery in up to 90% of cells in vitro, and maintains potency after at least 45 days of storage. In vivo, these LNPs deliver K27-D30 to the cytosol of cancerous cells in the liver, inhibiting RAS-driven growth and ultimately reducing tumor load in an HTVI-induced mouse model of hepatocellular carcinoma. This work shows that K27 holds promise as a new cancer therapeutic when delivered using this LNP platform. Furthermore, this technology has the potential to broaden the use of LNPs to include new cargo types─beyond RNA─for diverse therapeutic applications.


Subject(s)
Lipids , Nanoparticles , Mice , Animals , Liposomes/metabolism , Liver/metabolism , RNA, Small Interfering/metabolism
14.
J Vis Exp ; (191)2023 01 20.
Article in English | MEDLINE | ID: mdl-36744791

ABSTRACT

Lipid nanoparticles (LNPs) have attracted widespread attention recently with the successful development of the COVID-19 mRNA vaccines by Moderna and Pfizer/BioNTech. These vaccines have demonstrated the efficacy of mRNA-LNP therapeutics and opened the door for future clinical applications. In mRNA-LNP systems, the LNPs serve as delivery platforms that protect the mRNA cargo from degradation by nucleases and mediate their intracellular delivery. The LNPs are typically composed of four components: an ionizable lipid, a phospholipid, cholesterol, and a lipid-anchored polyethylene glycol (PEG) conjugate (lipid-PEG). Here, LNPs encapsulating mRNA encoding firefly luciferase are formulated by microfluidic mixing of the organic phase containing LNP lipid components and the aqueous phase containing mRNA. These mRNA-LNPs are then tested in vitro to evaluate their transfection efficiency in HepG2 cells using a bioluminescent plate-based assay. Additionally, mRNA-LNPs are evaluated in vivo in C57BL/6 mice following an intravenous injection via the lateral tail vein. Whole-body bioluminescence imaging is performed by using an in vivo imaging system. Representative results are shown for the mRNA-LNP characteristics, their transfection efficiency in HepG2 cells, and the total luminescent flux in C57BL/6 mice.


Subject(s)
COVID-19 , Nanoparticles , Animals , Mice , RNA, Messenger/metabolism , Microfluidics , Mice, Inbred C57BL , Phospholipids , RNA, Small Interfering
15.
J Am Chem Soc ; 145(8): 4691-4706, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36789893

ABSTRACT

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nonviral platform for mRNA delivery. While they have been explored for applications including vaccines and gene editing, LNPs have not been investigated for placental insufficiency during pregnancy. Placental insufficiency is caused by inadequate blood flow in the placenta, which results in increased maternal blood pressure and restricted fetal growth. Therefore, improving vasodilation in the placenta can benefit both maternal and fetal health. Here, we engineered ionizable LNPs for mRNA delivery to the placenta with applications in mediating placental vasodilation. We designed a library of ionizable lipids to formulate LNPs for mRNA delivery to placental cells and identified a lead LNP that enables in vivo mRNA delivery to trophoblasts, endothelial cells, and immune cells in the placenta. Delivery of this top LNP formulation encapsulated with VEGF-A mRNA engendered placental vasodilation, demonstrating the potential of mRNA LNPs for protein replacement therapy during pregnancy to treat placental disorders.


Subject(s)
Nanoparticles , Placental Insufficiency , Female , Pregnancy , Humans , Placenta/metabolism , RNA, Messenger/metabolism , Endothelial Cells/metabolism , Lipids , Nanoparticles/metabolism , RNA, Small Interfering/genetics
16.
Nat Commun ; 14(1): 75, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650129

ABSTRACT

Lipid nanoparticle-mediated RNA delivery holds great potential to treat various liver diseases. However, targeted delivery of RNA therapeutics to activated liver-resident fibroblasts for liver fibrosis treatment remains challenging. Here, we develop a combinatorial library of anisamide ligand-tethered lipidoids (AA-lipidoids) using a one-pot, two-step modular synthetic method and adopt a two-round screening strategy to identify AA-lipidoids with both high potency and selectivity to deliver RNA payloads to activated fibroblasts. The lead AA-lipidoid AA-T3A-C12 mediates greater RNA delivery and transfection of activated fibroblasts than its analog without anisamide and the FDA-approved MC3 ionizable lipid. In a preclinical model of liver fibrosis, AA-T3A-C12 enables ~65% silencing of heat shock protein 47, a therapeutic target primarily expressed by activated fibroblasts, which is 2-fold more potent than MC3, leading to significantly reduced collagen deposition and liver fibrosis. These results demonstrate the potential of AA-lipidoids for targeted RNA delivery to activated fibroblasts. Furthermore, these synthetic methods and screening strategies open a new avenue to develop and discover potent lipidoids with targeting properties, which can potentially enable RNA delivery to a range of cell and tissue types that are challenging to access using traditional lipid nanoparticle formulations.


Subject(s)
Nanoparticles , RNA , Humans , Ligands , Liposomes , Liver Cirrhosis/genetics , Liver Cirrhosis/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
17.
J Control Release ; 347: 521-532, 2022 07.
Article in English | MEDLINE | ID: mdl-35569584

ABSTRACT

Delivery of nucleic acids, such as mRNA, to immune cells has become a major focus in the past decade with ionizable lipid nanoparticles (LNPs) emerging as a clinically-validated delivery platform. LNPs-typically composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol lipids -have been designed and optimized for a variety of applications including cancer therapies, vaccines, and gene editing. However, LNPs have only recently been investigated for delivery to T cells, which has various therapeutic applications including the engineering of T cell immunotherapies. While several LNP formulations have been evaluated for mRNA delivery, recent work has demonstrated that the utilization of cholesterol analogs may enhance mRNA delivery. Other studies have shown that cholesterols modified with hydroxyl groups can alter endocytic recycling mechanisms. Here, we engineered a library of LNPs incorporating hydroxycholesterols to evaluate their impact on mRNA delivery to T cells by leveraging endosomal trafficking mechanisms. Substitution of 25% and 50% 7α-hydroxycholesterol for cholesterol in LNPs enhanced mRNA delivery to primary human T cells ex vivo by 1.8-fold and 2.0-fold, respectively. Investigation of endosomal trafficking revealed that these modifications also increase late endosome production and reduce the presence of recycling endosomes. These results suggest that hydroxyl modification of cholesterol molecules incorporated into LNP formulations provides a mechanism for improving delivery of nucleic acid cargo to T cells for a range of immunotherapy applications.


Subject(s)
Lipids , Nanoparticles , Cholesterol , Humans , Hydroxycholesterols , Liposomes , RNA, Messenger/genetics , T-Lymphocytes
18.
Sci Adv ; 8(8): eabo2423, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35196095

ABSTRACT

Nanoparticles, mRNA, and ultraviolet light combine to reprogram specific immune cells directly in the body.

19.
Nano Lett ; 22(1): 533-542, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34669421

ABSTRACT

Viral engineered chimeric antigen receptor (CAR) T cell therapies are potent, targeted cancer immunotherapies, but their permanent CAR expression can lead to severe adverse effects. Nonviral messenger RNA (mRNA) CAR T cells are being explored to overcome these drawbacks, but electroporation, the most common T cell transfection method, is limited by cytotoxicity. As a potentially safer nonviral delivery strategy, here, sequential libraries of ionizable lipid nanoparticle (LNP) formulations with varied excipient compositions were screened in comparison to a standard formulation for improved mRNA delivery to T cells with low cytotoxicity, revealing B10 as the top formulation with a 3-fold increase in mRNA delivery. When compared to electroporation in primary human T cells, B10 LNPs induced comparable CAR expression with reduced cytotoxicity while demonstrating potent cancer cell killing. These results demonstrate the impact of excipient optimization on LNP performance and support B10 LNPs as a potent mRNA delivery platform for T cell engineering.


Subject(s)
Nanoparticles , Humans , Liposomes/metabolism , RNA, Messenger/pharmacology , T-Lymphocytes/metabolism
20.
J Control Release ; 341: 616-633, 2022 01.
Article in English | MEDLINE | ID: mdl-34742747

ABSTRACT

Congenital disorders resulting in pathological protein deficiencies are most often treated postnatally with protein or enzyme replacement therapies. However, treatment of these disorders in utero before irreversible disease onset could significantly minimize disease burden, morbidity, and mortality. One possible strategy for the prenatal treatment of congenital disorders is in utero delivery of messenger RNA (mRNA). mRNA is a nucleic acid therapeutic that has previously been investigated as a platform for protein replacement therapies and gene editing technologies. While viral vectors have been explored to induce intracellular expression of mRNA, they are limited in their clinical application due to risks associated with immunogenicity and genomic integration. As an alternative to viral vectors, safe and efficient in utero mRNA delivery can be achieved using ionizable lipid nanoparticles (LNPs). While LNPs have demonstrated potent in vivo mRNA delivery to the liver following intravenous administration, intra-amniotic delivery has the potential to deliver mRNA to cells and tissues beyond those in the liver, such as in the skin, lung, and digestive tract. However, LNP stability in fetal amniotic fluid and how this stability affects mRNA delivery has not been previously investigated. Here, we engineered a library of LNPs using orthogonal design of experiments (DOE) to evaluate how LNP structure affects their stability in amniotic fluid ex utero and whether a lead candidate identified from these stability measurements enables intra-amniotic mRNA delivery in utero. We used a combination of techniques including dynamic light scattering (DLS), transmission electron microscopy (TEM), and chromatography followed by protein content quantification to screen LNP stability in amniotic fluids. These results identified multiple lead LNP formulations that are highly stable in amniotic fluids ranging from small animals to humans, including mouse, sheep, pig, and human amniotic fluid samples. We then demonstrate that stable LNPs from the ex utero screen in mouse amniotic fluid enabled potent mRNA delivery in primary fetal lung fibroblasts and in utero following intra-amniotic injection in a murine model. This exploration of ex utero stability in amniotic fluids demonstrates a means by which to identify novel LNP formulations for prenatal treatment of congenital disorders via in utero mRNA delivery.


Subject(s)
Amniotic Fluid , Nanoparticles , Animals , Liposomes/chemistry , Mice , Nanoparticles/chemistry , RNA, Messenger , Sheep , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...