Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(8): 5531-5538, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38660613

ABSTRACT

A method for modeling high oxidation state catalysts is used on precatalysts with unsymmetrical and symmetrical bidentate ligands to get a more detailed understanding of how changes to ancillary ligands affect the hydroamination of alkynes catalyzed by titanium. To model the electronic donor ability, the ligand donor parameter (LDP) was used, and to model the steric effects, percent buried volume (% Vbur) was employed. For the modeling study, 7 previously unpublished unsymmetrical Ti(XX')(NMe2)2 precatalysts were prepared, where XX' is a chelating ligand with pyrrolyl/indolyl linkages. The rates of these unsymmetrical and 10 previously reported symmetrical precatalysts were used with the model kobs = a + b(LDP)1 + c(LDP)2 + d(% Vbur)1 + e(% Vbur)2, where a-e were found through least-squares refinement. The model suggests that (1) the two attachment points of the bidentate ligand XX' are in different environments on the metal (e.g., axial and equatorial in a trigonal bipyramidal or square pyramidal structure), (2) the position of the unsymmetrical ligand on the metal is determined by the electronics of the ligand rather than the sterics, and (3) that one side of the chelating ligand's electronics strongly influences the rate, while the other side's sterics more strongly influences the rate. From these studies, we were able to generate catalysts fitting to this model with rate constants larger than the fastest symmetrical catalyst tested.

2.
ACS Org Inorg Au ; 3(4): 199-208, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37545657

ABSTRACT

Organophosphorus nerve agents (OPAs) are a toxic class of synthetic compounds that cause adverse effects with many biological systems. Development of methods for environmental remediation and passivation has been ongoing for years. However, little progress has been made in therapeutic development for exposure victims. Given the postexposure behavior of OPA materials in enzymes such as acetylcholinesterase (AChE), development of electrophilic compounds as therapeutics may be more beneficial than the currently employed nucleophilic countermeasures. In this report, we present our studies with an electrophilic, 16-electron manganese complex (iPrPNP)Mn(CO)2 (1) and the nucleophilic hydroxide derivative (iPrPNHP)Mn(CO)2(OH) (2). The reactivity of 1 with phosphorus acids and the reactivity of 2 with the P-F bond of diisopropylfluorophosphate (DIPF) were studied. The role of water in both nucleophilic and electrophilic reactivity was investigated with the use of 17O-labeled water. Promising results arising from reactions of both 1 and 2 with organophosphorus substrates are reported.

3.
Inorg Chem ; 61(32): 12508-12517, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35905438

ABSTRACT

The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.


Subject(s)
Uranium , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ligands , Models, Molecular , Sodium , Uranium/chemistry
4.
Chemistry ; 28(27): e202200114, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35286723

ABSTRACT

A method to explore head-to-head ϕ back-bonding from uranium f-orbitals into allyl π* orbitals has been pursued. Anionic allyl groups were coordinated to uranium with tethered anilide ligands, then the products were investigated by using NMR spectroscopy, single-crystal XRD, and theoretical methods. The (allyl)silylanilide ligand, N-((dimethyl)prop-2-enylsilyl)-2,6-diisopropylaniline (LH), was used as either the fully protonated, singly deprotonated, or doubly deprotonated form, thereby highlighting the stability and versatility of the silylanilide motif. A free, neutral allyl group was observed in UI2 (L1)2 (1), which was synthesized by using the mono-deprotonated ligand [K][N-((dimethyl)prop-2-enyl)silyl)-2,6-diisopropylanilide] (L1). The desired homoleptic sandwich complex U[L2]2 (2) was prepared from all three ligand precursors, but the most consistent results came from using the dipotassium salt of the doubly deprotonated ligand [K]2 [N-((dimethyl)propenidesilyl)-2,6-diisopropylanilide] (L2). This allyl-based sandwich complex was studied by using theoretical techniques with supporting experimental spectroscopy to investigate the potential for phi (ϕ) back-bonding. The bonding between UIV and the allyl fragments is best described as ligand-to-metal electron donation from a two carbon fragment-localized electron density into empty f-orbitals.

5.
Inorg Chem ; 60(4): 2740-2748, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33539075

ABSTRACT

Reaction of 3 equiv of NaNR2 (R = SiMe3) with NpCl4(DME)2 in THF afforded the Np(IV) silylamide complex, [Np(NR2)3Cl] (1), in good yield. Reaction of 1 with 1.5 equiv of KC8 in THF, in the presence of 1 equiv of dibenzo-18-crown-6, resulted in formation of [{K(DB-18-C-6)(THF)}3(µ3-Cl)][Np(NR2)3Cl]2 (4), also in good yield. Complex 4 represents the first structurally characterized Np(III) amide. Finally, reaction of NpCl4(DME)2 with 5 equiv of NaNR2 and 1 equiv of dibenzo-18-crown-6 afforded the Np(IV) bis(metallacycle), [{Na(DB-18-C-6)(Et2O)0.62(κ1-DME)0.38}2(µ-DME)][Np{N(R)(SiMe2CH2)}2(NR2)]2 (8), in moderate yield. Complex 8 was characterized by 1H NMR spectroscopy and X-ray crystallography and represents a rare example of a structurally characterized neptunium-hydrocarbyl complex. To support these studies, we also synthesized the uranium analogues of 4 and 8, namely, [K(2,2,2-cryptand)][U(NR2)3Cl] (2), [K(DB-18-C-6)(THF)2][U(NR2)3Cl] (3), [Na(DME)3][U{N(R)(SiMe2CH2)}2(NR2)] (6), and [{Na(DB-18-C-6)(Et2O)0.5(κ1-DME)0.5}2(µ-DME)][U{N(R)(SiMe2CH2)}2(NR2)]2 (7). Complexes 2, 3, 6, and 7 were characterized by a number of techniques, including NMR spectroscopy and X-ray crystallography.

6.
Inorg Chem ; 59(13): 8642-8646, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32623892

ABSTRACT

With the advent of lanthanide-based technologies, there is a clear need to advance the fundamental understanding of 4f-element chelation chemistry. Herein, we contribute to a growing body of lanthanide chelation chemistry and report the synthesis of bimetallic 4f-element complexes within an imine/hemiacetalate framework, Ln2TPTOMe [Ln = lanthanide; TPTOMe = tris(pyridineimine)(Tren)tris(methoxyhemiacetalate); Tren = tris(2-aminoethylamine)]. These products are generated from hydrolysis and methanolysis of the cage ligand tris(pyridinediimine)bis(Tren) (TPT; Tadanobu et al. Chem. Lett. 1993, 22 (5), 859-862) likely facilitated by inductive effects stemming from the Lewis acidic lanthanide cations. These complexes are interesting because they result from imine cleavage to generate two metal binding sites: one pocketed site within the macrocycle and the other terminal site capping a hemiacetalate moiety. A clear demarcation in reactivity is observed between samarium and europium, where the lighter and larger lanthanides generate a mixture of products, Ln2TPTOMe and LnTPT. Meanwhile, the heavier and smaller lanthanides generate exclusively bimetallic Ln2TPTOMe. The cleavage reactivity to form Ln2TPTOMe was extended beyond methanol to include other primary alcohols.

7.
J Am Chem Soc ; 140(50): 17369-17373, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30500184

ABSTRACT

Reduction of IU(NHAriPr6)2 (AriPr6 = 2,6-(2,4,6-iPr3C6H2)2C6H3) results in a rare example of a U(II) complex, U(NHAriPr6)2, and the first example that is a neutral species. Here, we show spectroscopic and magnetic studies that suggest a 5f46d0 valence electronic configuration for uranium, along with characterization of related U(III) complexes.


Subject(s)
Coordination Complexes/chemistry , Uranium/chemistry , Coordination Complexes/chemical synthesis , Ligands , Magnetic Phenomena , Molecular Structure , Oxidation-Reduction , Temperature
8.
Nat Chem ; 9(9): 837-842, 2017 09.
Article in English | MEDLINE | ID: mdl-28837168

ABSTRACT

Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for catalyst development are needed. Understanding ancillary ligand effects is arguably one of the most critical aspects of catalyst optimization and, while parameters for phosphines have been used for decades with low-valent systems, a comparable system does not exist for high-valent metals. A new electronic parameter for ligand donation, derived from experiments on a high-valent chromium species, is now available. Here, we show that the new parameters enable quantitative determination of ancillary ligand effects on catalysis rate and, in some cases, even provide mechanistic information. Analysing reactions in this way can be used to design better catalyst architectures and paves the way for the use of such parameters in a host of high-valent processes.

9.
Chem Sci ; 7(4): 2532-2536, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660023

ABSTRACT

A nitrogen-based analogue of the Schrock and Clark "yl-ene-yne" complex, W(CBu t )(CHBu t )(CH2Bu t )(dmpe), has been prepared. The new complex is the nitrido, imido, amido anion [NCr(NPh)(NPri2)2]-, which was structurally characterized with the [K(crypt-2.2.2)]+ counterion. The "Cr-N 1-2-3" complex was prepared from NCr(NHPh)(NPri2)2, which exists as this nitrido-amido tautomer, rather than the bis(imido) Cr(NH)(NPh)(NPri2)2. By selection of electrophile, the nitrido-imido salt K[NCr(NPh)(NPri2)2] can undergo reaction at either the imido or the nitrido to form unusual examples of nitrido or bis(imido) complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...