Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 15(4): 1189-1197, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665843

ABSTRACT

Many known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic. In the absence of H2O2 (trigger T1), e.g. in the majority of normal cells, it exists as an inactive oligomer. In cancer cells and in primed neutrophils (high H2O2), the oligomer is disrupted forming intermediate (inactive) lipophilic cationic species. These are accumulated in mitochondria (Mit) of cancer cells, where they are activated by hydrolysis at mitochondrial pH 8 (trigger T2) with formation of camptothecin. In contrast, the intermediates remain stable in neutrophils lacking Mit and therefore a source of T2. In this paper we demonstrated a proof-of-concept. Our prodrug exhibits antitumor activity both in vitro and in vivo, but is not toxic to normal cell and neutrophils in contrast to known single trigger prodrugs and the parent drug HO-cpt.

2.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396288

ABSTRACT

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Subject(s)
Arthritis , Immunity, Innate , Humans , Matrix Metalloproteinase 3 , Interleukin-6/metabolism , Lymphocytes/metabolism , Inflammation/metabolism , Fibroblasts/metabolism
3.
Biomolecules ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397474

ABSTRACT

Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.


Subject(s)
COVID-19 , Neutrophils , Humans , Neutrophils/metabolism , Post-Acute COVID-19 Syndrome , COVID-19/metabolism , Lung/metabolism , Elastin , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Endopeptidases , Extracellular Matrix/metabolism , Fibrosis
4.
Eur J Immunol ; 54(4): e2350582, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279592

ABSTRACT

Neutrophil extracellular traps (NETs) have been identified as triggers for a self-limited inflammatory reaction upon contact with nanoparticles within our bodies. This typically results in entrapping potentially harmful nano- or micro-objects following an immune burst. The demand for potent adjuvants has led to research on particulate-based adjuvants, particularly those that act via NET formation. Various particles, including hydrophobic nanoparticles, needle-like microparticles, and other natural and artificial crystals, have been shown to induce NET formation, eliciting a robust humoral and cellular immune response toward co-injected antigens. The NET formation was found to be the basis of the efficient use of alum as a vaccine adjuvant. Thus, nanoparticles with specific surface properties serve as NET-stimulating adjuvants. In this mini-review, we aim to summarize the current knowledge about the surface properties of particulate objects and the molecular pathways involved in inducing NET formation by neutrophils. Additionally, we discuss the potential use of nanoparticles for activating neutrophils in the tissues and the exploitation of such activation for enhancing vaccine adjuvants.


Subject(s)
Extracellular Traps , Nanoparticles , Neutrophils , Antigens , Adjuvants, Immunologic
5.
ACS Appl Bio Mater ; 7(1): 416-428, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38112180

ABSTRACT

The increasing demand for reliable near-infrared (NIR) probes exhibiting enduring fluorescence in living systems and facile compatibility with biomolecules such as peptides, antibodies or proteins is driven by the increasing use of NIR imaging in clinical diagnostics. To address this demand, a series of carboxy-functionalized unsymmetrical squaraine dyes (SQ-27, SQ-212, and SQ-215) along with non-carboxy-functionalized SQ-218 absorbing and emitting in the NIR wavelength range were designed and synthesized followed by photophysical characterization. This study focused on the impact of structural variations in the alkyl chain length, carboxy functionality positioning, and spacer chain length on dye aggregation and interaction with bovine serum albumin (BSA) as a model protein. In phosphate buffer (PB), the absorption intensity of the dyes markedly decreased accompanied by pronounced shoulders indicative of dye aggregation, and complete fluorescence quenching was seen in contrast to organic solvents. However, in the presence of BSA in PB, there was a enhancement in absorption intensity while regaining the fluorescence coupled with a remarkable increase in the intensity with increasing BSA concentrations, signifying the impact of dye-BSA interactions on preventing aggregation. Further analysis of Job's plot unveiled a 2:1 interaction ratio between BSA and all dyes, while the binding studies revealed a robust binding affinity (Ka) in the order of 107/mol. SQ-212 and SQ-215 were further tested for their in vitro and in vivo imaging capabilities. Notably, SQ-212 demonstrated nonpermeability to cells, while SQ-215 exhibited easy penetration and prominent cytoplasmic localization in in vitro studies. Injection of the dyes into laboratory mice showcased their efficacy in visualization, displaying stable and intense fluorescence in tissues without toxicity, organ damage, or behavioral changes. Thus, SQ-212 and SQ-215 are promising candidates for imaging applications, holding potential for noninvasive cellular and diagnostic imaging as well as biomarker detection when coupled with specific vectors in living systems.


Subject(s)
Cyclobutanes , Fluorescent Dyes , Animals , Mice , Fluorescent Dyes/chemistry , Serum Albumin, Bovine/chemistry , Cyclobutanes/chemistry , Phenols
7.
J Am Chem Soc ; 145(40): 22252-22264, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37773090

ABSTRACT

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).

8.
Front Immunol ; 14: 1174537, 2023.
Article in English | MEDLINE | ID: mdl-37600805

ABSTRACT

Introduction: Typical Western diet, rich in salt, contributes to autoimmune disease development. However, conflicting reports exist about the effect of salt on neutrophil effector functions, also in the context of arthritis. Methods: We investigated the effect of sodium chloride (NaCl) on neutrophil viability and functions in vitro, and in vivo employing the murine K/BxN-serum transfer arthritis (STA) model. Results and discussion: The effects of NaCl and external reactive oxygen species (H2O2) were further examined on osteoclasts in vitro. Hypertonic sodium-rich media caused primary/secondary cell necrosis, altered the nuclear morphology, inhibited phagocytosis, degranulation, myeloperoxidase (MPO) peroxidation activity and neutrophil extracellular trap (NET) formation, while increasing total ROS production, mitochondrial ROS production, and neutrophil elastase (NE) activity. High salt diet (HSD) aggravated arthritis by increasing inflammation, bone erosion, and osteoclast differentiation, accompanied by increased NE expression and activity. Osteoclast differentiation was decreased with 25 mM NaCl or 100 nM H2O2 addition to isotonic media. In contrast to NaCl, external H2O2 had pro-resorptive effects in vitro. We postulate that in arthritis under HSD, increased bone erosion can be attributed to an enhanced oxidative milieu maintained by infiltrating neutrophils, rather than a direct effect of NaCl.


Subject(s)
Arthritis , Sodium , Animals , Mice , Sodium Chloride/pharmacology , Neutrophils , Reactive Oxygen Species , Hydrogen Peroxide , Oxidative Stress , Sodium Chloride, Dietary
9.
Cells ; 12(14)2023 07 14.
Article in English | MEDLINE | ID: mdl-37508521

ABSTRACT

Mucopeptide concretions, previously called dacryoliths, are macroscopic stones that commonly obstruct the lacrimal sac. The mechanism behind dacryolithiasis remains unclear; however, the involvement of various immune cells, including neutrophils, has been confirmed. These findings remain limited, and no information on neutrophil extracellular traps (NETs), essentially involved in the pathogenesis of other lithiases, is available yet. Here, we employ microcomputed tomography, magnetic resonance tomography, histochemistry, mass spectrometry, and enzyme activity analyses to investigate the role of neutrophils and NETs in dacryolithiasis. We classify mucopeptide concretions into three types, with respect to the quantity of cellular and acellular material, polysaccharides, and mucosubstances. We propose the role of neutrophils and NETs within the existing model of gradual formation and growth of mucopeptide concretions, with neutrophils contributing to the initial stages of dacryolithiasis, as they localized on the inner (older) parts of the tissue. As NETs localized on the outer (newer) parts of the tissue, we link their role to the late stages of dacryolithiasis, presumably maintaining the proinflammatory environment and preventing efficient clearance. An abundance of IgG on the surface indicates the involvement of the adaptive immune system later as well. These findings bring new perspectives on dacryolithiasis, in which the innate and adaptive immune system are essentially involved.


Subject(s)
Extracellular Traps , Lacrimal Apparatus Diseases , Humans , X-Ray Microtomography , Lacrimal Apparatus Diseases/pathology , Neutrophils/pathology
10.
Int J Biol Macromol ; 249: 126056, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37524280

ABSTRACT

The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail. Thus, the nanofiber behavior was investigated by swelling, dynamic vapor sorption, and in vitro biodegradation in media mimicking the wound exudate. The mechanical properties were analysed from the stress-strain curves, the bioadhesivity from the texture analysis and the mucoadhesivity from the Zeta potential and transmittance measurements. The antimicrobial activity was assessed against S. aureus and E. coli strains, and the biocompatibility was tested in vitro on normal human dermal fibroblasts, and in vivo on rats. The application of the fiber mats with the best balance of properties as dressings on deep burn wound models in rats showed wound closure and active healing, with fully restoration of epithelia. It was concluded that the combination of chitosan with TMC into nanofibers provides new potential bioabsorbable wound dressing, opening new perspectives in regenerative medicine.


Subject(s)
Chitosan , Nanofibers , Rats , Humans , Animals , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Staphylococcus aureus , Escherichia coli , Absorbable Implants , Bandages
11.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768969

ABSTRACT

Neutrophil extracellular traps (NETs) and oxidative stress are considered to be beneficial in the innate immune defense against pathogens. However, defective clearance of NETs in the lung of acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients could lead to severe respiratory syndrome infection, the so-called coronavirus disease 2019 (COVID-19). To elucidate the pathways that are related to NETs within the pathophysiology of COVID-19, we utilized RNA sequencing (RNA-seq) as well as immunofluorescence and immunohistochemistry methods. RNA-seq analysis provided evidence for increased oxidative stress and the activation of viral-related signaling pathways in post-mortem lungs of COVID-19 patients compared to control donors. Moreover, an excess of neutrophil infiltration and NET formation were detected in the patients' lungs, where the extracellular DNA was oxidized and co-localized with neutrophil granule protein myeloperoxidase (MPO). Interestingly, staining of the lipid peroxidation marker 4-hydroxynonenal (4-HNE) depicted high colocalization with NETs and was correlated with the neutrophil infiltration of the lung tissues, suggesting that it could serve as a suitable marker for the identification of NETs and the severity of the disease. Moreover, local inhalation therapy to reduce the excess lipid oxidation and NETs in the lungs of severely infected patients might be useful to ameliorate their clinical conditions.


Subject(s)
COVID-19 , Extracellular Traps , Humans , COVID-19/metabolism , Extracellular Traps/metabolism , SARS-CoV-2 , Lung , Oxidative Stress , Neutrophils/metabolism
12.
Chemistry ; 28(30): e202104420, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35419888

ABSTRACT

Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.


Subject(s)
Antineoplastic Agents , Mitochondria , Antineoplastic Agents/chemistry , Apoptosis , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
13.
Pathogens ; 10(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34358011

ABSTRACT

Vaccination remains one of the most effective tools to prevent infectious diseases. To ensure that the best possible antigenic components are chosen to stimulate a cognitive immune response, boosting antigen presentation using adjuvants is common practice. Nanodiamond-based adjuvants are proposed here as a rapid and versatile platform for antigen conjugation, utilizing peptides common to different pathogenic strains and making this strategy a good candidate for a "ready-to-use" vaccine. Initiation of an inflammatory reaction with a resulting immune response is based on the ability of living organisms to entrap nanostructures such as nanodiamonds with neutrophil extracellular traps (NETs) formation. In this work, coronavirus peptide homological for MERS-CoV, fusion inhibitor, was conjugated to nanodiamonds and used to induce neutrophilic-driven self-limiting inflammation. The resulting adjuvant was safe and did not induce any tissue damage at the site of injection. Mice immunization resulted in IgG titers of »,000 within 28 days. Immunization of rabbits resulted in the formation of a high level of antibodies persistently present for up to 120 days after the first immunization (animal lifespan ~3 years). The peptide used for immunization proved to be reactive with sera of convalescent COVID patients, demonstrating the possibility of developing pancoronaviral vaccine candidates.

14.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Article in English | MEDLINE | ID: mdl-34031543

ABSTRACT

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Subject(s)
COVID-19/pathology , Extracellular Traps/metabolism , Neutrophils/immunology , COVID-19/complications , COVID-19/immunology , Citrullination , Complement Activation , Humans , Neutrophils/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombosis/etiology
15.
Arch Immunol Ther Exp (Warsz) ; 69(1): 5, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33677719

ABSTRACT

Coronaviruses share conservative spike protein (S) on their enveloped membrane surface, where S1 subunit recognizes and binds the cellular receptor, and the S2 subunit mediates membrane fusion. This similarity raises the question: does coronaviral infection by one create protection to others? Convalescent SARS-CoV-2 (COVID-19) sera were tested for cross reactivity with peptides from Middle East respiratory syndrome coronavirus (MERS-CoV) which shares 74% homology. Our results showed significant cross-reactivity with a peptide of the heptad repeat 2 (HR2) domain of the MERS-CoV spike protein. Sera samples of 47 validated seropositive convalescent COVID-19 patients and 40 sera samples of control patients, collected in pre-COVID time were used to establish cross-bind reactivity with the MERS-CoV peptide. Significantly stronger binding (p < 0.0001) was observed for IgG antibodies in convalescent COVID-19 patients compared to the control group. In ELISA, MERS-CoV peptide helps to discriminate post-COVID-19 populations and non-infected ones by the presence of antibodies in blood samples. This suggests that polyclonal antibodies established during SARS-CoV-2 infection can recognize and probably decrease severity of MERS-CoV and other coronaviral infections. The high homology of the spike protein domain also suggests that the opposite effect can be true: coronaviral infections produce cross-reactive antibodies effective against SARS-CoV-2. The collected data prove that despite the core HR2 region is hidden in the native viral conformation, its exposure during cell entry makes it highly immunogenic. Since inhibitory peptides to this region were previously described, this opens new possibilities in fighting coronaviral infections and developing vaccines effective even after possible viral mutations.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Cross Reactions , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology
16.
Angew Chem Int Ed Engl ; 60(20): 11158-11162, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33656236

ABSTRACT

The folding and export of proteins and hydrolysis of unfolded proteins are disbalanced in the endoplasmic reticulum (ER) of cancer cells, leading to so-called ER stress. Agents further augmenting this effect are used as anticancer drugs including clinically approved proteasome inhibitors bortezomib and carfilzomib. However, these drugs can affect normal cells, which also rely strongly on ER functions, leading, for example, to accumulation of reactive oxygen species (ROS). To address this problem, we have developed ER-targeted prodrugs activated only in cancer cells in the presence of elevated ROS amounts. These compounds are conjugates of cholic acid with N-alkylaminoferrocene-based prodrugs. We confirmed their accumulation in the ER of cancer cells, their anticancer efficacy, and cancer cell specificity. These prodrugs induce ER stress, attenuate mitochondrial membrane potential, and generate mitochondrial ROS leading to cell death via necrosis. We also demonstrated that the new prodrugs are activated in vivo in Nemeth-Kellner lymphoma (NK/Ly) murine model.


Subject(s)
Antineoplastic Agents/pharmacology , Endoplasmic Reticulum/drug effects , Lymphoma/drug therapy , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Animals , Antineoplastic Agents/chemistry , Endoplasmic Reticulum/metabolism , Humans , Lymphoma/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Prodrugs/chemistry
17.
Nanomaterials (Basel) ; 10(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610567

ABSTRACT

Many nano/microparticles (n/µP), to which our body is exposed, have no physiological way of removal. Our immune system sense these "small particulate objects", and tries to decrease their harmfulness. Since oxidation, phagocytosis and other methods of degradation do not work with small, chemically resistant, and hydrophobic nanoparticles (nP). This applies to soot from air pollution, nano-diamonds from cosmic impact, polishing and related machines, synthetic polymers, and dietary n/µP. Our body tries to separate these from the surrounding tissue using aggregates from neutrophil extracellular traps (NETs). This effectively works in soft tissues where n/µP are entrapped into granuloma-like structures and isolated. The interactions of hydrophobic nanocrystals with circulating or ductal patrolling neutrophils and the consequent formation of occlusive aggregated NETs (aggNETs) are prone to obstruct capillaries, bile ducts in gallbladder and liver, and many more tubular structures. This may cause serious health problems and often fatality. Here we describe how specific size and surface properties of n/µP can activate neutrophils and lead to aggregation-related pathologies. We discuss "natural" sources of n/µP and those tightly connected to unhealthy diets.

18.
Biomacromolecules ; 20(10): 3915-3923, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31479237

ABSTRACT

We report here on a one-pot construction of oil-filled hierarchical capsular assemblies using the nanoprecipitation technique. Relying on multicomponent phase diagrams, we show that simultaneous and/or sequential nanoprecipitations involving polymer combinations can be precisely programmed to design a new class of mixed/multilayered multicomponent nanocapsules, with a precise control of the dimensions, shell thickness/composition, and spatial distribution of the building blocks. The simplicity and tunability of this approach are exemplified here with a library of neutral and ionic polysaccharides giving access to a range of functional multilayered nanocarriers of interest for biomedical applications.


Subject(s)
Nanocapsules/chemistry , Polysaccharides/chemistry , Technology, Pharmaceutical/methods , Oils/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry
19.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31422870

ABSTRACT

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Subject(s)
Extracellular Traps/immunology , Gallstones/immunology , Neutrophils/immunology , Animals , Female , Humans , Immunity, Innate/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Reactive Oxygen Species/immunology
20.
J Am Soc Nephrol ; 30(10): 1857-1869, 2019 10.
Article in English | MEDLINE | ID: mdl-31296606

ABSTRACT

BACKGROUND: Serum oxalate levels suddenly increase with certain dietary exposures or ethylene glycol poisoning and are a well known cause of AKI. Established contributors to oxalate crystal-induced renal necroinflammation include the NACHT, LRR and PYD domains-containing protein-3 (NLRP3) inflammasome and mixed lineage kinase domain-like (MLKL) protein-dependent tubule necroptosis. These studies examined the role of a novel form of necrosis triggered by altered mitochondrial function. METHODS: To better understand the molecular pathophysiology of oxalate-induced AIK, we conducted in vitro studies in mouse and human kidney cells and in vivo studies in mice, including wild-type mice and knockout mice deficient in peptidylprolyl isomerase F (Ppif) or deficient in both Ppif and Mlkl. RESULTS: Crystals of calcium oxalate, monosodium urate, or calcium pyrophosphate dihydrate, as well as silica microparticles, triggered cell necrosis involving PPIF-dependent mitochondrial permeability transition. This process involves crystal phagocytosis, lysosomal cathepsin leakage, and increased release of reactive oxygen species. Mice with acute oxalosis displayed calcium oxalate crystals inside distal tubular epithelial cells associated with mitochondrial changes characteristic of mitochondrial permeability transition. Mice lacking Ppif or Mlkl or given an inhibitor of mitochondrial permeability transition displayed attenuated oxalate-induced AKI. Dual genetic deletion of Ppif and Mlkl or pharmaceutical inhibition of necroptosis was partially redundant, implying interlinked roles of these two pathways of regulated necrosis in acute oxalosis. Similarly, inhibition of mitochondrial permeability transition suppressed crystal-induced cell death in primary human tubular epithelial cells. PPIF and phosphorylated MLKL localized to injured tubules in diagnostic human kidney biopsies of oxalosis-related AKI. CONCLUSIONS: Mitochondrial permeability transition-related regulated necrosis and necroptosis both contribute to oxalate-induced AKI, identifying PPIF as a potential molecular target for renoprotective intervention.


Subject(s)
Acute Kidney Injury/pathology , Mitochondrial Transmembrane Permeability-Driven Necrosis , Necroptosis , Acute Kidney Injury/chemically induced , Animals , Cells, Cultured , Humans , Male , Mice , Oxalates/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...