Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504345

ABSTRACT

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Microsatellite Instability , Neoplastic Syndromes, Hereditary , Humans , Animals , Macaca mulatta/genetics , Macaca mulatta/metabolism , MutL Protein Homolog 1/genetics , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Colorectal Neoplasms/pathology , DNA Methylation/genetics , Epigenesis, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , DNA Mismatch Repair/genetics
2.
Nat Commun ; 14(1): 7062, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923717

ABSTRACT

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macaca mulatta , COVID-19/pathology , Respiratory Aerosols and Droplets , Lung/pathology , Antibodies, Viral , Virus Replication , Antibodies, Monoclonal
3.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
4.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175977

ABSTRACT

CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.


Subject(s)
CRISPR-Cas Systems , DNA Breaks, Double-Stranded , CRISPR-Cas Systems/genetics , Gene Editing , DNA End-Joining Repair , Genome
5.
Genome Biol ; 24(1): 74, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069644

ABSTRACT

We present JBrowse 2, a general-purpose genome annotation browser offering enhanced visualization of complex structural variation and evolutionary relationships. It retains core features of JBrowse while adding new views for synteny, dotplots, breakpoints, gene fusions, and whole-genome overviews. It allows users to share sessions, open multiple genomes, and navigate between views. It can be embedded in a web page, used as a standalone application, or run from Jupyter notebooks or R sessions. These improvements are enabled by a ground-up redesign using modern web technology. We describe application functionality, use cases, performance benchmarks, and implementation notes for web administrators and developers.


Subject(s)
Genomics , Software , Synteny , Genome , Biological Evolution , Web Browser , Internet
6.
Bioinformatics ; 38(10): 2791-2801, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561167

ABSTRACT

MOTIVATION: Single-cell sequencing methods provide previously impossible resolution into the transcriptome of individual cells. Cell hashing reduces single-cell sequencing costs by increasing capacity on droplet-based platforms. Cell hashing methods rely on demultiplexing algorithms to accurately classify droplets; however, assumptions underlying these algorithms limit accuracy of demultiplexing, ultimately impacting the quality of single-cell sequencing analyses. RESULTS: We present Bimodal Flexible Fitting (BFF) demultiplexing algorithms BFFcluster and BFFraw, a novel class of algorithms that rely on the single inviolable assumption that barcode count distributions are bimodal. We integrated these and other algorithms into cellhashR, a new R package that provides integrated QC and a single command to execute and compare multiple demultiplexing algorithms. We demonstrate that BFFcluster demultiplexing is both tunable and insensitive to issues with poorly behaved data that can confound other algorithms. Using two well-characterized reference datasets, we demonstrate that demultiplexing with BFF algorithms is accurate and consistent for both well-behaved and poorly behaved input data. AVAILABILITY AND IMPLEMENTATION: cellhashR is available as an R package at https://github.com/BimberLab/cellhashR. cellhashR version 1.0.3 was used for the analyses in this manuscript and is archived on Zenodo at https://www.doi.org/10.5281/zenodo.6402477. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Electronic Data Processing , Sequence Analysis , Single-Cell Analysis
7.
Nat Commun ; 13(1): 2995, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637225

ABSTRACT

Hepatitis B virus has infected a third of the world's population, and 296 million people are living with chronic infection. Chronic infection leads to progressive liver disease, including hepatocellular carcinoma and liver failure, and there remains no reliable curative therapy. These gaps in our understanding are due, in large part, to a paucity of animal models of HBV infection. Here, we show that rhesus macaques regularly clear acute HBV infection, similar to adult humans, but can develop long-term infection if immunosuppressed. Similar to patients, we longitudinally detected HBV DNA, HBV surface antigen, and HBV e antigen in the serum of experimentally infected animals. In addition, we discovered hallmarks of HBV infection in the liver, including RNA transcription, HBV core and HBV surface antigen translation, and covalently closed circular DNA biogenesis. This pre-clinical animal model will serve to accelerate emerging HBV curative therapies into the clinic.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Animals , Antigens, Surface , Hepatitis B virus/genetics , Humans , Macaca mulatta
8.
PLoS Pathog ; 18(3): e1010396, 2022 03.
Article in English | MEDLINE | ID: mdl-35358290

ABSTRACT

The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.


Subject(s)
Simian Immunodeficiency Virus , Animals , Antibodies, Monoclonal, Humanized/pharmacology , HIV Antibodies , Humans , Macaca mulatta , Receptors, CCR5
9.
Mol Ther Methods Clin Dev ; 24: 241-254, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35211637

ABSTRACT

Genome engineering is a powerful tool for in vitro research and the creation of novel model organisms and has growing clinical applications. Randomly integrating vectors, such as lentivirus- or transposase-based methods, are simple and easy to use but carry risks arising from insertional mutagenesis. Here we present enhanced-specificity tagmentation-assisted PCR (esTag-PCR), a rapid and accurate method for mapping transgene integration and copy number. Using stably transfected HepG2 cells, we demonstrate that esTag-PCR has higher integration site detection accuracy and efficiency than alternative tagmentation-based methods. Next, we performed esTag-PCR on rhesus macaque embryos derived from zygotes injected with piggyBac transposase and transposon/transgene plasmid. Using low-input trophectoderm biopsies, we demonstrate that esTag-PCR accurately maps integration events while preserving blastocyst viability. We used these high-resolution data to evaluate the performance of piggyBac-mediated editing of rhesus macaque embryos, demonstrating that increased concentration of transposon/transgene plasmid can increase the fraction of embryos with stable integration; however, the number of integrations per embryo also increases, which may be problematic for some applications. Collectively, esTag-PCR represents an important improvement to the detection of transgene integration, provides a method to validate and screen edited embryos before implantation, and represents an important advance in the creation of transgenic animal models.

10.
J Immunol ; 207(12): 2913-2921, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34810222

ABSTRACT

CD8+ T cells are key mediators of antiviral and antitumor immunity. The isolation and study of Ag-specific CD8+ T cells, as well as mapping of their MHC restriction, has practical importance to the study of disease and the development of therapeutics. Unfortunately, most experimental approaches are cumbersome, owing to the highly variable and donor-specific nature of MHC-bound peptide/TCR interactions. Here we present a novel system for rapid identification and characterization of Ag-specific CD8+ T cells, particularly well suited for samples with limited primary cells. Cells are stimulated ex vivo with Ag of interest, followed by live cell sorting based on surface-trapped TNF-α. We take advantage of major advances in single-cell sequencing to generate full-length sequence data from the paired TCR α- and ß-chains from these Ag-specific cells. The paired TCR chains are cloned into retroviral vectors and used to transduce donor CD8+ T cells. These TCR transductants provide a virtually unlimited experimental reagent, which can be used for further characterization, such as minimal epitope mapping or identification of MHC restriction, without depleting primary cells. We validated this system using CMV-specific CD8+ T cells from rhesus macaques, characterizing an immunodominant Mamu-A1*002:01-restricted epitope. We further demonstrated the utility of this system by mapping a novel HLA-A*68:02-restricted HIV Gag epitope from an HIV-infected donor. Collectively, these data validate a new strategy to rapidly identify novel Ags and characterize Ag-specific CD8+ T cells, with applications ranging from the study of infectious disease to immunotherapeutics and precision medicine.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Animals , Epitopes , Epitopes, T-Lymphocyte , Macaca mulatta , Receptors, Antigen, T-Cell , Tumor Necrosis Factor-alpha
11.
Nat Commun ; 12(1): 5135, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446720

ABSTRACT

SARS-CoV-2 and its variants continue to infect hundreds of thousands every day despite the rollout of effective vaccines. Therefore, it is essential to understand the levels of protection that these vaccines provide in the face of emerging variants. Here, we report two demographically balanced cohorts of BNT162b2 vaccine recipients and COVID-19 patients, from which we evaluate neutralizing antibody titers against SARS-CoV-2 as well as the B.1.1.7 (alpha) and B.1.351 (beta) variants. We show that both B.1.1.7 and B.1.351 are less well neutralized by serum from vaccinated individuals, and that B.1.351, but not B.1.1.7, is less well neutralized by convalescent serum. We also find that the levels of variant-specific anti-spike antibodies are proportional to neutralizing activities. Together, our results demonstrate the escape of the emerging SARS-CoV-2 variants from neutralization by serum antibodies, which may lead to reduced protection from re-infection or increased risk of vaccine breakthrough.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
12.
Nat Commun ; 12(1): 3343, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099693

ABSTRACT

In the absence of a prophylactic vaccine, the use of antiretroviral therapy (ART) as pre-exposure prophylaxis (PrEP) to prevent HIV acquisition by uninfected individuals is a promising approach to slowing the epidemic, but its efficacy is hampered by incomplete patient adherence and ART-resistant variants. Here, we report that competitive inhibition of HIV Env-CCR5 binding via the CCR5-specific antibody Leronlimab protects rhesus macaques against infection following repeated intrarectal challenges of CCR5-tropic SHIVSF162P3. Injection of Leronlimab weekly at 10 mg/kg provides significant but partial protection, while biweekly 50 mg/kg provides complete protection from SHIV acquisition. Tissue biopsies from protected macaques post challenge show complete CCR5 receptor occupancy and an absence of viral nucleic acids. After Leronlimab washout, protected macaques remain aviremic, and adoptive transfer of hematologic cells into naïve macaques does not transmit viral infection. These data identify CCR5 blockade with Leronlimab as a promising approach to HIV prophylaxis and support initiation of clinical trials.


Subject(s)
Receptors, CCR5/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Female , HIV Antibodies/pharmacology , HIV Infections , Humans , Macaca mulatta , Male , Mucous Membrane , Pre-Exposure Prophylaxis , Viral Load
13.
Int J Infect Dis ; 103: 25-32, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33186704

ABSTRACT

OBJECTIVE: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now a global pandemic. Emerging results indicate a dysregulated immune response. Given the role of CCR5 in immune cell migration and inflammation, we investigated the impact of CCR5 blockade via the CCR5-specific antibody leronlimab on clinical, immunological, and virological parameters in severe COVID-19 patients. METHODS: In March 2020, 10 terminally ill, critical COVID-19 patients received two doses of leronlimab via individual emergency use indication. We analyzed changes in clinical presentation, immune cell populations, inflammation, as well as SARS-CoV-2 plasma viremia before and 14 days after treatment. RESULTS: Over the 14-day study period, six patients survived, two were extubated, and one discharged. We observed complete CCR5 receptor occupancy in all donors by day 7. Compared with the baseline, we observed a concomitant statistically significant reduction in plasma IL-6, restoration of the CD4/CD8 ratio, and resolution of SARS-CoV2 plasma viremia (pVL). Furthermore, the increase in the CD8 percentage was inversely correlated with the reduction in pVL (r = -0.77, p = 0.0013). CONCLUSIONS: Our study design precludes clinical efficacy inferences but the results implicate CCR5 as a therapeutic target for COVID-19 and they form the basis for ongoing randomized clinical trials.


Subject(s)
CCR5 Receptor Antagonists/therapeutic use , CD8-Positive T-Lymphocytes/immunology , COVID-19 Drug Treatment , Cytokines/blood , RNA, Viral/blood , SARS-CoV-2 , Adult , Aged , COVID-19/immunology , COVID-19/virology , Female , Humans , Male , Middle Aged , Time Factors
14.
PLoS Pathog ; 16(11): e1008666, 2020 11.
Article in English | MEDLINE | ID: mdl-33232376

ABSTRACT

Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Genome, Viral/genetics , Viremia , Animals , Cell Line , Chromosomes, Artificial, Bacterial , Cytomegalovirus/pathogenicity , DNA, Recombinant , Disease Models, Animal , Female , Fibroblasts/virology , Humans , Macaca mulatta , Male , Mutation , Open Reading Frames/genetics , Phylogeny , Species Specificity
15.
Xenotransplantation ; 27(4): e12578, 2020 07.
Article in English | MEDLINE | ID: mdl-31930750

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) and xenotransplantation are accompanied by viral reactivations and virus-associated complications resulting from immune deficiency. Here, in a Mauritian cynomolgus macaque model of fully MHC-matched allogeneic HSCT, we report reactivations of cynomolgus polyomavirus, lymphocryptovirus, and cytomegalovirus, macaque viruses analogous to HSCT-associated human counterparts BK virus, Epstein-Barr virus, and human cytomegalovirus. Viral replication in recipient macaques resulted in characteristic disease manifestations observed in HSCT patients, such as polyomavirus-associated hemorrhagic cystitis and tubulointerstitial nephritis or lymphocryptovirus-associated post-transplant lymphoproliferative disorder. However, in most cases, the reconstituted immune system, alone or in combination with short-term pharmacological intervention, exerted control over viral replication, suggesting engraftment of functional donor-derived immunity. Indeed, the donor-derived reconstituted immune systems of two long-term engrafted HSCT recipient macaques responded to live attenuated yellow fever 17D vaccine (YFV 17D) indistinguishably from untransplanted controls, mounting 17D-targeted neutralizing antibody responses and clearing YFV 17D within 14 days. Together, these data demonstrate that this macaque model of allogeneic HSCT recapitulates clinical situations of opportunistic viral infections in transplant patients and provides a pre-clinical model to test novel prophylactic and therapeutic modalities.


Subject(s)
Disease Models, Animal , Hematopoietic Stem Cell Transplantation , Opportunistic Infections , Virus Diseases , Allografts , Animals , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Macaca fascicularis , Opportunistic Infections/virology
16.
Bioinformatics ; 35(24): 5370-5371, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31309221

ABSTRACT

SUMMARY: Large scale genomic studies produce millions of sequence variants, generating datasets far too massive for manual inspection. To ensure variant and genotype data are consistent and accurate, it is necessary to evaluate variants prior to downstream analysis using quality control (QC) reports. Variant call format (VCF) files are the standard format for representing variant data; however, generating summary statistics from these files is not always straightforward. While tools to summarize variant data exist, they generally produce simple text file tables, which still require additional processing and interpretation. VariantQC fills this gap as a user friendly, interactive visual QC report that generates and concisely summarizes statistics from VCF files. The report aggregates and summarizes variants by dataset, chromosome, sample and filter type. The VariantQC report is useful for high-level dataset summary, quality control and helps flag outliers. Furthermore, VariantQC operates on VCF files, so it can be easily integrated into many existing variant pipelines. AVAILABILITY AND IMPLEMENTATION: DISCVRSeq's VariantQC tool is freely available as a Java program, with the compiled JAR and source code available from https://github.com/BimberLab/DISCVRSeq/. Documentation and example reports are available at https://bimberlab.github.io/DISCVRSeq/.


Subject(s)
Software , Genetic Variation , Genomics , Genotype , Quality Control
17.
BMC Genomics ; 20(1): 176, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30841849

ABSTRACT

BACKGROUND: Non-human primates (NHPs), particularly macaques, serve as critical and highly relevant pre-clinical models of human disease. The similarity in human and macaque natural disease susceptibility, along with parallel genetic risk alleles, underscores the value of macaques in the development of effective treatment strategies. Nonetheless, there are limited genomic resources available to support the exploration and discovery of macaque models of inherited disease. Notably, there are few public databases tailored to searching NHP sequence variants, and no other database making use of centralized variant calling, or providing genotype-level data and predicted pathogenic effects for each variant. RESULTS: The macaque Genotype And Phenotype (mGAP) resource is the first public website providing searchable, annotated macaque variant data. The mGAP resource includes a catalog of high confidence variants, derived from whole genome sequence (WGS). The current mGAP release at time of publication (1.7) contains 17,087,212 variants based on the sequence analysis of 293 rhesus macaques. A custom pipeline was developed to enable annotation of the macaque variants, leveraging human data sources that include regulatory elements (ENCODE, RegulomeDB), known disease- or phenotype-associated variants (GRASP), predicted impact (SIFT, PolyPhen2), and sequence conservation (Phylop, PhastCons). Currently mGAP includes 2767 variants that are identical to alleles listed in the human ClinVar database, of which 276 variants, spanning 258 genes, are identified as pathogenic. An additional 12,472 variants are predicted as high impact (SnpEff) and 13,129 are predicted as damaging (PolyPhen2). In total, these variants are predicted to be associated with more than 2000 human disease or phenotype entries reported in OMIM (Online Mendelian Inheritance in Man). Importantly, mGAP also provides genotype-level data for all subjects, allowing identification of specific individuals harboring alleles of interest. CONCLUSIONS: The mGAP resource provides variant and genotype data from hundreds of rhesus macaques, processed in a consistent manner across all subjects ( https://mgap.ohsu.edu ). Together with the extensive variant annotations, mGAP presents unprecedented opportunity to investigate potential genetic associations with currently characterized disease models, and to uncover new macaque models based on parallels with human risk alleles.


Subject(s)
Computational Biology/methods , Genetic Variation , Genotype , Phenotype , Animals , Disease Models, Animal , Humans , Information Storage and Retrieval , Internet , Macaca mulatta
18.
Immunogenetics ; 70(9): 571-583, 2018 09.
Article in English | MEDLINE | ID: mdl-29869002

ABSTRACT

The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).


Subject(s)
Receptors, KIR , Terminology as Topic , Animals , Cattle , Humans , Macaca mulatta/genetics , Pan troglodytes/genetics , Pongo pygmaeus/genetics
19.
J Immunol ; 200(1): 49-60, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29150562

ABSTRACT

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens/metabolism , Killer Cells, Natural/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigen Presentation , Antigens, Viral/immunology , Antigens, Viral/metabolism , Cells, Cultured , Conserved Sequence/genetics , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Macaca fascicularis , Macaca mulatta , Models, Animal , Peptides/immunology , Peptides/metabolism , HLA-E Antigens
20.
Nat Commun ; 8(1): 2146, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247188

ABSTRACT

Hepatitis B virus (HBV) is a major global health concern, and the development of curative therapeutics is urgently needed. Such efforts are impeded by the lack of a physiologically relevant, pre-clinical animal model of HBV infection. Here, we report that expression of the HBV entry receptor, human sodium-taurocholate cotransporting polypeptide (hNTCP), on macaque primary hepatocytes facilitates HBV infection in vitro, where all replicative intermediates including covalently closed circular DNA (cccDNA) are present. Furthermore, viral vector-mediated expression of hNTCP on hepatocytes in vivo renders rhesus macaques permissive to HBV infection. These in vivo macaque HBV infections are characterized by longitudinal HBV DNA in serum, and detection of HBV DNA, RNA, and HBV core antigen (HBcAg) in hepatocytes. Together, these results show that expressing hNTCP on macaque hepatocytes renders them susceptible to HBV infection, thereby establishing a physiologically relevant model of HBV infection to study immune clearance and test therapeutic and curative approaches.


Subject(s)
Hepatitis B virus/physiology , Hepatocytes/metabolism , Hepatocytes/virology , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Animals , Cells, Cultured , DNA, Viral/metabolism , Hepatitis B/genetics , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B Core Antigens/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatocytes/cytology , Host-Pathogen Interactions , Humans , Macaca mulatta , Organic Anion Transporters, Sodium-Dependent/genetics , RNA, Viral/metabolism , Symporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...