Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Mol Cell Biochem ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728809

ABSTRACT

The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and ß-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 ß phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades ß-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of ß-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3ß and MPTP pore with preservation of mitochondrial function.

2.
Mol Cell Biochem ; 476(10): 3857-3867, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34125317

ABSTRACT

Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.


Subject(s)
Ischemic Preconditioning , Myocardial Reperfusion Injury , Myocardium , Myocytes, Cardiac , Animals , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
3.
Hypertens Res ; 44(7): 791-802, 2021 07.
Article in English | MEDLINE | ID: mdl-33612826

ABSTRACT

ß-Adrenergic blockers are no longer recommended as first-line therapy due to the reduced cardioprotection of traditional ß-blockers compared with other antihypertensive drugs. It is unknown whether third-generation ß-blockers share the limitations of traditional ß-blockers. The aim of the present study was to compare the effects of nebivolol or atenolol on central and peripheral systolic blood pressure (SBP) and its variability and target organ damage (TOD) in N-nitro-L-arginine methyl ester (L-NAME) hypertensive rats. Male Wistar rats were treated with L-NAME for 8 weeks together with oral administration of nebivolol 30 mg/kg (n = 8), atenolol 90 mg/kg (n = 8), or vehicle (n = 8). The control group was composed of vehicle-treated Wistar rats. SBP and its variability, as well as echocardiographic parameters, were assessed during the last 2 weeks of treatment. Tissue levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor ß (TGF-ß), and histopathological parameters were evaluated in the left ventricle and aorta. Nebivolol had a greater ability than atenolol to decrease central SBP and mid-term and short-term blood pressure variability (BPV) in L-NAME rats. Echocardiographic analysis showed that nebivolol was more effective than atenolol on E/A wave ratio normalization. Compared with atenolol treatment, nebivolol had a greater protective effect on different TOD markers, inducing a decrease in collagen deposition and a reduction in the proinflammatory cytokines IL-6 and TNF-α in the left ventricle and aorta. Our findings suggest that the adverse hemodynamic profile and the reduced cardiovascular protection reported with traditional ß-blockers must not be carried forward to third-generation ß-blockers.


Subject(s)
Atenolol , Hypertension , Nebivolol , Animals , Antihypertensive Agents/pharmacology , Atenolol/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Hypertension/drug therapy , Male , Nebivolol/pharmacology , Rats , Rats, Wistar , Treatment Outcome
4.
Am J Physiol Heart Circ Physiol ; 316(3): H743-H750, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30681368

ABSTRACT

Adenosine is involved in classic preconditioning in most species and acts especially through adenosine A1 and A3 receptors. The aim of the present study was to evaluate whether remote ischemic preconditioning (rIPC) activates adenosine A1 receptors and improves mitochondrial function, thereby reducing myocardial infarct size. Isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion [ischemia-reperfusion (I/R)]. In a second group, before isolation of the heart, a rIPC protocol (3 cycles of hindlimb I/R) was performed. Infarct size was measured with tetrazolium staining, and Akt/endothelial nitric oxide (NO) synthase (eNOS) expression/phosphorylation and mitochondrial function were evaluated after ischemia at 10 and 60 min of reperfusion. As expected, rIPC significantly decreased infarct size. This beneficial effect was abolished only when 8-cyclopentyl-1,3-dipropylxanthine (adenosine A1 receptor blocker) and NG-nitro-l-arginine methyl ester (NO synthesis inhibitor) were administered during the reperfusion phase. At the early reperfusion phase, rIPC induced significant Akt and eNOS phosphorylation, which was abolished by the perfusion with an adenosine A1 receptor blocker. I/R led to impaired mitochondrial function, which was attenuated by rIPC and mediated by adenosine A1 receptors. In conclusion, we demonstrated that rIPC limits myocardial infarct by activation of adenosine A1 receptors at early reperfusion in the isolated rat heart. Interestingly, rIPC appears to reduce myocardial infarct size by the Akt/eNOS pathway and improves mitochondrial function during myocardial reperfusion. NEW & NOTEWORTHY Adenosine is involved in classic preconditioning and acts especially through adenosine A1 and A3 receptors. However, its role in the mechanism of remote ischemic preconditioning is controversial. In this study, we demonstrated that remote ischemic preconditioning activates adenosine A1 receptors during early reperfusion, inducing Akt/endothelial nitric oxide synthase phosphorylation and improving mitochondrial function, thereby reducing myocardial infarct size.


Subject(s)
Ischemic Preconditioning, Myocardial , Mitochondria, Heart , Receptor, Adenosine A1 , Adenosine A1 Receptor Antagonists/therapeutic use , Adenosine Triphosphate/biosynthesis , Animals , Enzyme Inhibitors/therapeutic use , Male , Membrane Potential, Mitochondrial , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/physiopathology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Nitroarginine/therapeutic use , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Xanthines/therapeutic use
5.
Rev. argent. cardiol ; 86(2): 86-89, abr. 2018. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1003182

ABSTRACT

RESUMEN Introducción: Es conocido que la adenosina está involucrada en el mecanismo de precondicionamiento isquémico clásico, actuando a través de los receptores A1 y A3. Objetivo: El objetivo de nuestro estudio fue evaluar si el precondicionamiento isquémico remoto (rIPC) activa los receptores de adenosina A1 antes de la isquemia o en la reperfusión y, de ese modo, reduce el tamaño del infarto de miocardio. Corazones aislados de rata fueron sometidos a 30 minutos de isquemia y 60 minutos de reperfusión (I/R). En otro grupo de ratas, se realizó un protocolo de rIPC. El tamaño del infarto se midió con trifenil de tetrazolio. Resultados: El rIPC disminuyó significativamente el tamaño del infarto. Este efecto fue abolido cuando se administró DPCPX (bloqueante del receptor A1) o L-NAME (inhibidor de la síntesis de óxido nítrico) durante la reperfusión. Conclusión: Empleando un modelo de corazón aislado de rata demostramos que el rIPC reduce el tamaño del infarto de mio cardio mediante la activación del receptor A1 de adenosina al inicio de la reperfusión miocárdica. Este efecto protector también estaría mediado por la activación de la enzima óxido nítrico sintasa durante la reperfusión.

SELECTION OF CITATIONS
SEARCH DETAIL
...