Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 17429, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234083

ABSTRACT

Acinetobacter baumannii (A. baumannii) is a significant cause of severe nosocomial pneumonia in immunocompromised individuals world-wide. With limited treatment options available, a better understanding of host immnity to A. baumannii infection is critical to devise alternative control strategies. Our previous study has identified that intracellular Nod1/Nod2 signaling pathway is required for the immune control of A. baumannii in airway epithelial cells in vitro. In the current study, using Nod2-/- mice and an in vivo sublethal model of pulmonary infection, we show that Nod2 contributes to the early lung defense against A. baumannii infection through reactive oxygen species (ROS)/reactive nitrogen species (RNS) production as Nod2-/- mice showed significantly reduced production of ROS/RNS in the lungs following A. baumannii infection. Consistent with the higher bacterial load, A. baumannii-induced neutrophil recruitment, cytokine/chemokine response and lung pathology was also exacerbated in Nod2-/- mice at early time points post-infection. Finally, we show that administration of Nod2 ligand muramyl dipeptide (MDP) prior to infection protected the wild- type mice from A. baumannii pulmonary challenge. Collectively, Nod2 is an important player in the early lung immunity against A. baumannii and modulating Nod2 pathway could be considered as a viable therapeutic strategy to control A. baumannii pulmonary infection.


Subject(s)
Acinetobacter Infections/immunology , Acinetobacter baumannii/immunology , Immunity, Innate/physiology , Lung/immunology , Nod2 Signaling Adaptor Protein/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/pathology , Animals , Anti-Infective Agents/pharmacology , Female , Lung/drug effects , Lung/pathology , Mice, Inbred C57BL , Mice, Knockout , Nod2 Signaling Adaptor Protein/genetics , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL