Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 23(1): 6, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229090

ABSTRACT

BACKGROUND: Cycling workload is an essential factor in practical cycling training. Saddle height is the most studied topic in bike fitting, but the results are controversial. This study aims to investigate the effects of workload and saddle height on the activation level and coordination of the lower limb muscles during cycling. METHODS: Eighteen healthy male participants with recreational cycling experience performed 15 × 2-min constant cadence cycling at five saddle heights of 95%, 97%, 100%, 103%, and 105% of greater trochanter height (GTH) and three cycling workloads of 25%, 50%, and 75% of functional threshold power (FTP). The EMG signals of the rectus femoris (RF), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (MG) of the right lower limb were collected throughout the experiment. RESULTS: Greater muscle activation was observed for the RF and BF at a higher cycling workload, whereas no differences were observed for the TA and MG. The MG showed intensified muscle activation as the saddle height increased. The mean and maximum amplitudes of the EMG signals of the MG increased by 56.24% and 57.24% at the 25% FTP workload, 102.71% and 126.95% at the 50% FTP workload, and 84.27% and 53.81% at the 75% FTP workload, respectively, when the saddle height increased from 95 to 100% of the GTH. The muscle activation level of the RF was minimal at 100% GTH saddle height. The onset and offset timing revealed few significant differences across cycling conditions. CONCLUSIONS: Muscle activation of the RF and BF was affected by cycling workload, while that of the MG was affected by saddle height. The 100% GTH is probably the appropriate saddle height for most cyclists. There was little statistical difference in muscle activation duration, which might be related to the small workload.


Subject(s)
Bicycling , Workload , Humans , Male , Bicycling/physiology , Electromyography , Biomechanical Phenomena , Lower Extremity/physiology , Muscle, Skeletal/physiology
2.
BMC Sports Sci Med Rehabil ; 15(1): 99, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563654

ABSTRACT

PURPOSE: Long exhausted running causes pain at the lateral femoral epicondyle for some runners. The pain has been revealed to be related to the behavior of the iliotibial band (ITB) during running. The purpose of this study is to examine the effects of in-series musculature on the behavior of the ITB in healthy participants during an exhaustive run. METHODS: Twenty-five healthy participants (15 males, 10 females) were recruited in the current study. All participants performed a 30-minute exhaustive run at a self-selected speed with laboratory-provided footwear. Muscle activities of ITB-related muscles including tensor fascia latae (TFL), gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), and vastus lateralis (VL) were recorded using surface electromyography (EMG). RESULTS: Maximum amplitudes at the initial stage (the first minute), the mid stage (the 15-minute), and the end stage (the 30-minute) were compared during the exhaustive running. Significant decreases (p < 0.05) were observed in the maximum amplitudes of the TFL, Gmax, Gmed, and BF at the mid (decreased by ~ 15%) and end (decreased by ~ 30%) stages compared to the initial stage. The onset and the offset remained unaltered during the running (p ≥ 0.05). CONCLUSION: The behavior of the healthy ITB might be altered due to the activities of the in-series musculature. Excessive compression forces might be applied to the lateral femoral epicondyle from the ITB to provide stability for the knee joint during an exhaustive run. The findings could provide a basic understanding of the behavior of healthy ITB.

3.
Bioengineering (Basel) ; 10(4)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37106604

ABSTRACT

BACKGROUND: Iliotibial band syndrome (ITBS) is one of the most prevalent overuse injuries in runners. The strain rate in the iliotibial band (ITB) has been theorized to be the primary causative factor in the development of ITBS. Running speed and exhaustion might lead to an alteration in the biomechanics that influence the strain rate in the iliotibial band. OBJECTIVES: To identify how exhaustion states and running speeds affect the ITB strain and strain rate. METHODS: A total of 26 healthy runners (including 16 males and 10 females) ran at a normal preferred speed and a fast speed. Then, participants performed a 30 min exhaustive treadmill run at a self-selected speed. Afterward, participants were required to run at similar speeds to those of the pre-exhaustion state. RESULTS: Both the exhaustion and running speeds were revealed to have significant influences on the ITB strain rate. After exhaustion, an increase of approximately 3% in the ITB strain rate was observed for both the normal speed (p = 0.001) and the fast speed (p = 0.008). Additionally, a rapid increase in the running speed could lead to an increase in the ITB strain rate for both the pre- (9.71%, p = 0.000) and post-exhaustion (9.87%, p = 0.000) states. CONCLUSIONS: It should be noted that an exhaustion state could lead to an increase in the ITB strain rate. In addition, a rapid increase in running speed might cause a higher ITB strain rate, which is proposed to be the primary cause of ITBS. The risk of injury should also be considered due to the rapid increase in the training load involved. Running at a normal speed in a non-exhaustive state might be beneficial for the prevention and treatment of ITBS.

4.
Front Bioeng Biotechnol ; 9: 646533, 2021.
Article in English | MEDLINE | ID: mdl-33937215

ABSTRACT

It is not clear for inhalation of ultrafine metal particles in air pollution to impair human health. In the study, we aimed to investigate whether short-term (4 weeks) inhalation of ultrafine zinc particles could deteriorate the cardiac and hemodynamic functions in rats of myocardial infarction (MI). MI was induced in Wistar rats through coronary artery ligation surgery and given an inhalation of ultrafine zinc particles for 4 weeks (post-MI 4 weeks, 4 days per week, and 4 h per day). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow wave were recorded in the carotid artery and analyzed by using the Womersley model. Myocardial infarction resulted in the LV wall thinning, LV cavity dilation, remarkable decrease of ejection fraction, dp/dt Max, -dp/dt Min, myocardial strain and strain rates, and increased LV end-diastolic pressure, as well as impaired hemodynamic environment. The short-term inhalation of ultrafine zinc particles significantly alleviated cardiac and hemodynamic dysfunctions, which could protect from the MI-induced myocardial and hemodynamic impairments albeit it is unknown for the long-term inhalation.

5.
Article in English | MEDLINE | ID: mdl-32039193

ABSTRACT

Although it is possible for inhalation of ultrafine particles to impair human health, its effect is not clear in patients with HFpEF. This study investigated cardiac and hemodynamic changes in hypertension-induced rats of HFpEF after inhaling ultrafine zinc particles for a while. Multiple experimental measurements were carried out in DSS rats fed with high salt (HS) and low salt (LS) diets as well as HS diet with the inhalation of ultrafine zinc particles (defined as HP). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow waves were recorded in the carotid artery and abdominal aorta and analyzed by the models of Windkessel and Womersley types. HS and HP rats were found to show lower strains on endocardium and epicardium than LS rats. The inhalation of ultrafine zinc particles further reduced the strain in the longitudinal direction on the endocardium of rats with HFpEF, but had relatively small effects on the epicardium. The inhalation of ultrafine zinc particles resulted in the increase of systemic resistance and the decrease of total vascular compliance as well as the increased PWV and induced more severe vascular stiffening in rats with HFpEF. In summary, the inhalation of ultrafine zinc particles deteriorated local myocardial dysfunctions in the LV and the hemodynamic environment in peripheral arteries in rats of HFpEF. This study is of importance to understand the mechanisms of cardiovascular impairments owing to air pollution.

SELECTION OF CITATIONS
SEARCH DETAIL