Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 11(6): 1307-1322, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30172883

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with frequent post-surgical local recurrence. The combination of adjuvant chemotherapy with radiotherapy is under consideration to achieve a prolonged progression-free survival (PFS). To date, few studies have determined the proteome profiles associated with response to adjuvant chemoradiation. We herein analyzed the proteomes of primary PDAC tumors subjected to additive chemoradiation after surgical resection and achieving short PFS (median 6 months) versus prolonged PFS (median 28 months). Proteomic analysis revealed the overexpression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) and Monoamine Oxidase A (MAOA) in the short PFS cohort, which were corroborated by immunohistochemistry. In vitro, specific inhibition of ALDH1A1 by A37 in combination with gemcitabine, radiation, and chemoradiation lowered cell viability and augmented cell death in MiaPaCa-2 and Panc 05.04 cells. ALDH1A1 silencing in both cell lines dampened cell proliferation, cell metabolism, and colony formation. In MiaPaCa-2 cells, ALDH1A1 silencing sensitized cells towards treatment with gemcitabine, radiation or chemoradiation. In Panc 05.04, increased cell death was observed upon gemcitabine treatment only. These findings are in line with previous studies that have suggested a role of ALDH1A1 chemoradiation resistance, e.g., in esophageal cancer. In summary, we present one of the first proteome studies to investigate the responsiveness of PDAC to chemoradiation and provide further evidence for a role of ALDH1A1 in therapy resistance.

2.
Sci Rep ; 7(1): 15910, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29162887

ABSTRACT

Podocytes are highly specialized epithelial cells essentially required to establish and maintain the kidney filtration barrier. Due to their complex cellular architecture these cells rely on an elaborated cytoskeletal apparatus providing plasticity as well as adaptive adhesion properties to withstand significant physical filtration forces. However, our knowledge about podocyte specific components of the cytoskeletal machinery is still incomplete. Employing cross-analysis of various quantitative omics-data sets we identify the WD40-domain containing protein CORO2B as a podocyte enriched protein. Furthermore, we demonstrate the distinct localization pattern of CORO2B to the ventral actin cytoskeleton serving as a physical linkage module to cell-matrix adhesion sites. Analysis of a novel Coro2b knockout mouse revealed that CORO2B modulates stress response of podocytes in an experimental nephropathy model. Using quantitative focal adhesome proteomics we identify the recruitment of CFL1 via CORO2B to focal adhesions as an underlying mechanism. Thus, we describe CORO2B as a novel podocyte enriched protein influencing cytoskeletal plasticity and stress adaptation.


Subject(s)
Actin Cytoskeleton/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Podocytes/metabolism , WD40 Repeats , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Animals , Cofilin 1/metabolism , Focal Adhesions/metabolism , Focal Adhesions/ultrastructure , Humans , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Models, Biological , Podocytes/ultrastructure , Stress, Physiological , Survival Analysis
3.
Mol Oncol ; 10(1): 40-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26304112

ABSTRACT

Cancer associated fibroblasts (CAFs) constitute an abundant stromal component of most solid tumors. Fibroblast activation protein (FAP) α is a cell surface protease that is expressed by CAFs. We corroborate this expression profile by immunohistochemical analysis of colorectal cancer specimens. To better understand the tumor-contextual role of FAPα, we investigate how FAPα shapes functional and proteomic features of CAFs using loss- and gain-of function cellular model systems. FAPα activity has a strong impact on the secreted CAF proteome ("secretome"), including reduced levels of anti-angiogenic factors, elevated levels of transforming growth factor (TGF) ß, and an impact on matrix processing enzymes. Functionally, FAPα mildly induces sprout formation by human umbilical vein endothelial cells. Moreover, loss of FAPα leads to a more epithelial cellular phenotype and this effect was rescued by exogenous application of TGFß. In collagen contraction assays, FAPα induced a more contractile cellular phenotype. To characterize the proteolytic profile of FAPα, we investigated its specificity with proteome-derived peptide libraries and corroborated its preference for cleavage carboxy-terminal to proline residues. By "terminal amine labeling of substrates" (TAILS) we explored FAPα-dependent cleavage events. Although FAPα acts predominantly as an amino-dipeptidase, putative FAPα cleavage sites in collagens are present throughout the entire protein length. In contrast, putative FAPα cleavage sites in non-collagenous proteins cluster at the amino-terminus. The degradomic study highlights cell-contextual proteolysis by FAPα with distinct positional profiles. Generally, our findings link FAPα to key aspects of CAF biology and attribute an important role in tumor-stroma interaction to FAPα.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , Gelatinases/physiology , Membrane Proteins/physiology , Neoplasm Proteins/metabolism , Proteome , Serine Endopeptidases/physiology , Stromal Cells/metabolism , Cell Line, Tumor , Endopeptidases , Fibroblasts/metabolism , Humans , Proteolysis , Transforming Growth Factor beta/metabolism
4.
BMC Genomics ; 16: 559, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26220445

ABSTRACT

BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness. RESULTS: In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non-malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins. CONCLUSION: Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC.


Subject(s)
Amines/chemistry , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Proteome/analysis , Proteomics , Carbon Isotopes/chemistry , Carcinoma, Renal Cell/metabolism , Chromatography, High Pressure Liquid , Formaldehyde/chemistry , Humans , Isotope Labeling , Kidney Neoplasms/metabolism , Paraffin Embedding , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...