Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 361(6405): 920-923, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30166491

ABSTRACT

Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.


Subject(s)
Biodiversity , Climate Change
2.
Nature ; 506(7486): 47-51, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24499916

ABSTRACT

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Subject(s)
Biodiversity , Diet , Herbivory , Nematoda , Plants , Animals , Arctic Regions , Bison/physiology , Cold Climate , Freezing , High-Throughput Nucleotide Sequencing , Horses/physiology , Mammoths/physiology , Nematoda/classification , Nematoda/genetics , Nematoda/isolation & purification , Plants/classification , Plants/genetics , Poaceae/genetics , Poaceae/growth & development , Soil , Time Factors , Yukon Territory
SELECTION OF CITATIONS
SEARCH DETAIL
...