Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 23(6): 1028-1040, 2021 06.
Article in English | MEDLINE | ID: mdl-33658631

ABSTRACT

PURPOSE: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Intellectual Disability/genetics , Regulatory Factor X Transcription Factors , Transcription Factors/genetics
2.
J Child Neurol ; 27(2): 178-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21954431

ABSTRACT

Electrical status epilepticus in sleep syndrome is the association of the electroencephalographic pattern and deficits in language or global cognitive function and behavioral problems. The etiology is often unknown, but genetic risk factors have been implicated. Array-based comparative genomic hybridization was used to identify copy number variations in 13 children with electrical status epilepticus in sleep syndrome to identify possible underlying risk factors. Seven copy number variations were detected in 4 of the 13 patients, which consisted of 6 novel gains and 1 loss, the recurrent 15q13.3 microdeletion. Two patients carried a probable pathogenic copy number variation containing a gene involved in the cholinergic pathway. Genetic aberrations in patients with electrical status epilepticus in sleep syndrome can provide an entry in the investigation of the etiology of electrical status epilepticus in sleep. However, further studies are needed to confirm our findings.


Subject(s)
Sleep/genetics , Status Epilepticus/genetics , Child Language , Child, Preschool , DNA Copy Number Variations , Electroencephalography , Genetic Predisposition to Disease , Humans , Status Epilepticus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...