Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
RNA ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777382

ABSTRACT

The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 base pairs (29 bp repeats), believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts varies according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream of 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.

3.
Int J Mol Sci ; 24(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175811

ABSTRACT

Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.


Subject(s)
Alternative Splicing , Endothelial Cells , Stomach Neoplasms , Up-Regulation , Endothelial Cells/pathology , Stomach Neoplasms/physiopathology , Neovascularization, Pathologic/genetics , Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Biomarkers , Prognosis , Cells, Cultured , Animals , Mice
4.
Clin Genet ; 104(2): 230-237, 2023 08.
Article in English | MEDLINE | ID: mdl-37038048

ABSTRACT

Spondylocostal dysostosis (SCD), a condition characterized by multiple segmentation defects of the vertebrae and rib malformations, is caused by bi-allelic variants in one of the genes involved in the Notch signaling pathway that tunes the "segmentation clock" of somitogenesis: DLL3, HES7, LFNG, MESP2, RIPPLY2, and TBX6. To date, seven individuals with LFNG variants have been reported in the literature. In this study we describe two newborns and one fetus with SCD, who were found by trio-based exome sequencing (trio-ES) to carry homozygous (c.822-5C>T) or compound heterozygous (c.[863dup];[1063G>A]) and (c.[521G>T];[890T>G]) variants in LFNG. Notably, the c.822-5C>T change, affecting the polypyrimidine tract of intron 5, is the first non-coding variant reported in LFNG. This study further refines the clinical and molecular features of spondylocostal dysostosis 3 and adds to the numerous investigations supporting the usefulness of trio-ES approach in prenatal and neonatal settings.


Subject(s)
Abnormalities, Multiple , Hernia, Diaphragmatic , Humans , Infant, Newborn , Spine/abnormalities , Abnormalities, Multiple/genetics , Hernia, Diaphragmatic/genetics , Alleles , T-Box Domain Proteins/genetics , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics
5.
Cancers (Basel) ; 14(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954483

ABSTRACT

RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.

6.
Nat Commun ; 12(1): 3760, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145295

ABSTRACT

Alternative Lengthening of Telomeres (ALT) is a Break-Induced Replication (BIR)-based mechanism elongating telomeres in a subset of human cancer cells. While the notion that spontaneous DNA damage at telomeres is required to initiate ALT, the molecular triggers of this physiological telomere instability are largely unknown. We previously proposed that the telomeric long noncoding RNA TERRA may represent one such trigger; however, given the lack of tools to suppress TERRA transcription in cells, our hypothesis remained speculative. We have developed Transcription Activator-Like Effectors able to rapidly inhibit TERRA transcription from multiple chromosome ends in an ALT cell line. TERRA transcription inhibition decreases marks of DNA replication stress and DNA damage at telomeres and impairs ALT activity and telomere length maintenance. We conclude that TERRA transcription actively destabilizes telomere integrity in ALT cells, thereby triggering BIR and promoting telomere elongation. Our data point to TERRA transcription manipulation as a potentially useful target for therapy.


Subject(s)
RNA, Long Noncoding/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Chromosome Breakage , DNA Damage/genetics , DNA Replication/genetics , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155103

ABSTRACT

The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Neoplasms/pathology , Trichothiodystrophy Syndromes/enzymology , Animals , Cells, Cultured , Cytochrome P-450 Enzyme System/genetics , Epoprostenol , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/radiation effects , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Mice , Skin/pathology , Transcription, Genetic , Trichothiodystrophy Syndromes/genetics , Ultraviolet Rays , Xeroderma Pigmentosum/genetics
8.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Article in English | MEDLINE | ID: mdl-33909043

ABSTRACT

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Subject(s)
Alanine-tRNA Ligase/genetics , Methionine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/genetics , Alanine-tRNA Ligase/metabolism , Child , Enzyme Stability/genetics , Female , Humans , Methionine-tRNA Ligase/metabolism , Trichothiodystrophy Syndromes/enzymology , Trichothiodystrophy Syndromes/pathology , Whole Genome Sequencing
9.
Int J Mol Sci ; 22(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673424

ABSTRACT

Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.


Subject(s)
Aminopeptidases/metabolism , DNA Polymerase beta/metabolism , G-Quadruplexes , Serine Proteases/metabolism , Telomere Homeostasis , Telomere-Binding Proteins/metabolism , Cell Line, Tumor , Humans , Multiprotein Complexes , Replication Protein A/metabolism , Shelterin Complex , Telomere/chemistry , Telomere/metabolism
10.
Front Genet ; 11: 488, 2020.
Article in English | MEDLINE | ID: mdl-32499820

ABSTRACT

Long non-coding RNAs (lncRNAs) are recognized as an important class of regulatory molecules involved in a variety of biological functions. However, the regulatory mechanisms of long non-coding genes expression are still poorly understood. The characterization of the genomic features of lncRNAs is crucial to get insight into their function. In this study, we exploited recent annotations by GENCODE to characterize the genomic and splicing features of long non-coding genes in comparison with protein-coding ones, both in human and mouse. Our analysis highlighted differences between the two classes of genes in terms of their gene architecture. Significant differences in the splice sites usage were observed between long non-coding and protein-coding genes (PCG). While the frequency of non-canonical GC-AG splice junctions represents about 0.8% of total splice sites in PCGs, we identified a significant enrichment of the GC-AG splice sites in long non-coding genes, both in human (3.0%) and mouse (1.9%). In addition, we found a positional bias of GC-AG splice sites being enriched in the first intron in both classes of genes. Moreover, a significant shorter length and weaker donor and acceptor sites were found comparing GC-AG introns to GT-AG introns. Genes containing at least one GC-AG intron were found conserved in many species, more prone to alternative splicing and a functional analysis pointed toward their enrichment in specific biological processes such as DNA repair. Our study shows for the first time that GC-AG introns are mainly associated with lncRNAs and are preferentially located in the first intron. Additionally, we discovered their regulatory potential indicating the existence of a new mechanism of non-coding and PCGs expression regulation.

11.
Antiviral Res ; 171: 104593, 2019 11.
Article in English | MEDLINE | ID: mdl-31470040

ABSTRACT

The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.


Subject(s)
Host-Pathogen Interactions/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , MicroRNAs/genetics , RNA Interference , RNA, Viral/genetics , Viral Nonstructural Proteins/genetics , 3' Untranslated Regions , Binding Sites , Cell Line, Tumor , Computational Biology/methods , Gene Expression Profiling , Genotype , Haplotypes , Humans , Influenza, Human/epidemiology , Mutation , Polymorphism, Genetic , Seasons
12.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31374204

ABSTRACT

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Subject(s)
Hair Diseases/pathology , Mutation , Threonine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/pathology , Alleles , Amino Acid Sequence , Case-Control Studies , Hair Diseases/genetics , Humans , Phenotype , Sequence Homology , Transcription Factor TFIIH/genetics , Trichothiodystrophy Syndromes/genetics
13.
BMC Genet ; 16: 132, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26553317

ABSTRACT

BACKGROUND: The genetic structure of human populations is the outcome of the combined action of different processes such as demographic dynamics and natural selection. Several efforts toward the characterization of population genetic architectures and the identification of adaptation signatures were recently made. In this study, we provide a genome-wide depiction of the Italian population structure and the analysis of the major determinants of the current existing genetic variation. RESULTS: We defined and characterized 210 genomic loci associated with the first Principal Component calculated on the Italian genotypic data and correlated to the North-south genetic gradient. Using a gene-enrichment approach we identified the immune function as primarily involved in the Italian population differentiation and we described a locus on chromosome 13 showing combined evidence of North-south diversification in allele frequencies and signs of recent positive selection. In this region our bioinformatics analysis pinpointed an uncharacterized long intergenic non-coding (lincRNA), whose expression appeared specific for immune-related tissues suggesting its relevance for the immune function. CONCLUSIONS: Our study, combining population genetic analyses with biological insights provides a description of the Italian genetic structure that in future could contribute to the evaluation of complex diseases risk in the population context.


Subject(s)
Biological Phenomena , Genetics, Population , Chromosomes, Human, Pair 13/genetics , Gene Ontology , Genetic Loci , Genome, Human , Humans , Italy , Principal Component Analysis , Selection, Genetic
14.
Biomed Res Int ; 2015: 146250, 2015.
Article in English | MEDLINE | ID: mdl-26273587

ABSTRACT

In the past few years, the role of long noncoding RNAs (lncRNAs) in tumor development and progression has been disclosed although their mechanisms of action remain to be elucidated. An important contribution to the comprehension of lncRNAs biology in cancer could be obtained through the integrated analysis of multiple expression datasets. However, the growing availability of public datasets requires new data mining techniques to integrate and describe relationship among data. In this perspective, we explored the powerness of the Association Rule Mining (ARM) approach in gene expression data analysis. By the ARM method, we performed a meta-analysis of cancer-related microarray data which allowed us to identify and characterize a set of ten lncRNAs simultaneously altered in different brain tumor datasets. The expression profiles of the ten lncRNAs appeared to be sufficient to distinguish between cancer and normal tissues. A further characterization of this lncRNAs signature through a comodulation expression analysis suggested that biological processes specific of the nervous system could be compromised.


Subject(s)
Brain Neoplasms/genetics , Data Mining/methods , Gene Expression Profiling/methods , Genetic Association Studies/methods , RNA, Long Noncoding/genetics , RNA, Neoplasm/genetics , Algorithms , Base Sequence , Databases, Genetic , Genetic Markers/genetics , History, Medieval , Humans , Molecular Sequence Data
15.
PLoS One ; 10(7): e0130561, 2015.
Article in English | MEDLINE | ID: mdl-26151554

ABSTRACT

Moderate DNA damage resulting from metabolic activities or sub-lethal doses of exogenous insults may eventually lead to cancer onset. Human 46BR.1G1 cells bear a mutation in replicative DNA ligase I (LigI) which results in low levels of replication-dependent DNA damage. This replication stress elicits a constitutive phosphorylation of the ataxia telangiectasia mutated (ATM) checkpoint kinase that fails to arrest cell cycle progression or to activate apoptosis or cell senescence. Stable transfection of wild type LigI, as in 7A3 cells, prevents DNA damage and ATM activation. Here we show that parental 46BR.1G1 and 7A3 cells differ in important features such as cell morphology, adhesion and migration. Comparison of gene expression profiles in the two cell lines detects Bio-Functional categories consistent with the morphological and migration properties of LigI deficient cells. Interestingly, ATM inhibition makes 46BR.1G1 more similar to 7A3 cells for what concerns morphology, adhesion and expression of cell-cell adhesion receptors. These observations extend the influence of the DNA damage response checkpoint pathways and unveil a role for ATM kinase activity in modulating cell biology parameters relevant to cancer progression.


Subject(s)
Cell Shape/genetics , DNA Ligases/genetics , DNA Replication/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Blotting, Western , Cell Adhesion/genetics , Cell Cycle/genetics , Cell Line , Cell Line, Transformed , Cell Movement/genetics , DNA Damage , DNA Ligase ATP , DNA Ligases/deficiency , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Microscopy, Fluorescence , Mutation , Phosphorylation , Reverse Transcriptase Polymerase Chain Reaction , Time-Lapse Imaging/methods
16.
BMC Bioinformatics ; 15 Suppl 1: S6, 2014.
Article in English | MEDLINE | ID: mdl-24564370

ABSTRACT

BACKGROUND: The amount of gene expression data available in public repositories has grown exponentially in the last years, now requiring new data mining tools to transform them in information easily accessible to biologists. RESULTS: By exploiting expression data publicly available in the Gene Expression Omnibus (GEO) database, we developed a new bioinformatics tool aimed at the identification of genes whose expression appeared simultaneously altered in different experimental conditions, thus suggesting co-regulation or coordinated action in the same biological process. To accomplish this task, we used the 978 human GEO Curated DataSets and we manually performed the selection of 2,109 pair-wise comparisons based on their biological rationale. The lists of differentially expressed genes, obtained from the selected comparisons, were stored in a PostgreSQL database and used as data source for the CorrelaGenes tool. Our application uses a customized Association Rule Mining (ARM) algorithm to identify sets of genes showing expression profiles correlated with a gene of interest. The significance of the correlation is measured coupling the Lift, a well-known standard ARM index, and the χ(2) p value. The manually curated selection of the comparisons and the developed algorithm constitute a new approach in the field of gene expression profiling studies. Simulation performed on 100 randomly selected target genes allowed us to evaluate the efficiency of the procedure and to obtain preliminary data demonstrating the consistency of the results. CONCLUSIONS: The preliminary results of the simulation showed how CorrelaGenes could contribute to the characterization of molecular pathways and biological processes integrating data obtained from other applications and available in public repositories.


Subject(s)
Gene Expression Profiling/methods , Transcriptome , Algorithms , Data Mining , Down-Regulation , Humans , Internet , Up-Regulation
17.
Stroke ; 43(4): 980-6, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22363065

ABSTRACT

BACKGROUND AND PURPOSE: Ischemic stroke (IS) shares many common risk factors with coronary artery disease (CAD). We hypothesized that genetic variants associated with myocardial infarction (MI) or CAD may be similarly involved in the etiology of IS. To test this hypothesis, we evaluated whether single-nucleotide polymorphisms (SNPs) at 11 different loci recently associated with MI or CAD through genome-wide association studies were associated with IS. METHODS: Meta-analyses of the associations between the 11 MI-associated SNPs and IS were performed using 6865 cases and 11 395 control subjects recruited from 9 studies. SNPs were either genotyped directly or imputed; in a few cases a surrogate SNP in high linkage disequilibrium was chosen. Logistic regression was performed within each study to obtain study-specific ßs and standard errors. Meta-analysis was conducted using an inverse variance weighted approach assuming a random effect model. RESULTS: Despite having power to detect odds ratio of 1.09-1.14 for overall IS and 1.20-1.32 for major stroke subtypes, none of the SNPs were significantly associated with overall IS and/or stroke subtypes after adjusting for multiple comparisons. CONCLUSIONS: Our results suggest that the major common loci associated with MI risk do not have effects of similar magnitude on overall IS but do not preclude moderate associations restricted to specific IS subtypes. Disparate mechanisms may be critical in the development of acute ischemic coronary and cerebrovascular events.


Subject(s)
Brain Ischemia/genetics , Genome-Wide Association Study , Linkage Disequilibrium , Myocardial Infarction/genetics , Polymorphism, Single Nucleotide , Stroke/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
18.
OMICS ; 16(1-2): 24-36, 2012.
Article in English | MEDLINE | ID: mdl-22321013

ABSTRACT

We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Fibroblasts/physiology , MicroRNAs/metabolism , Cells, Cultured , Cluster Analysis , Fibroblasts/cytology , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , Humans , MicroRNAs/genetics , Microarray Analysis
19.
Eur J Hum Genet ; 19(5): 593-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21248747

ABSTRACT

Large-scale population studies have established that genetic factors contribute to individual differences in smoking behavior. Linkage and genome-wide association studies have shown many chromosomal regions and genes associated with different smoking behaviors. One study was the association of single-nucleotide polymorphisms (SNPs) in the CHRNA5-A3-B4 gene cluster to nicotine addiction. Here, we report a replication of this association in the Italian population represented by three genetically isolated populations. One, the Val Borbera, is a genetic isolate from North-Western Italy; the Cilento population, is located in South-Western Italy; and the Carlantino village is located in South-Eastern Italy. Owing to their position and their isolation, the three populations have a different environment, different history and genetic structure. The variant A of the rs1051730 SNP was significantly associated with smoking quantity in two populations, Val Borbera and Cilento, no association was found in Carlantino population probably because difference in LD pattern in the variant region.


Subject(s)
Genome-Wide Association Study , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Smoking/genetics , Tobacco Use Disorder/genetics , Genetic Predisposition to Disease , Humans , Italy , Multigene Family
20.
PLoS One ; 4(10): e7554, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19847309

ABSTRACT

BACKGROUND: Isolated populations are a useful resource for mapping complex traits due to shared stable environment, reduced genetic complexity and extended Linkage Disequilibrium (LD) compared to the general population. Here we describe a large genetic isolate from the North West Apennines, the mountain range that runs through Italy from the North West Alps to the South. METHODOLOGY/PRINCIPAL FINDINGS: The study involved 1,803 people living in 7 villages of the upper Borbera Valley. For this large population cohort, data from genealogy reconstruction, medical questionnaires, blood, anthropometric and bone status QUS parameters were evaluated. Demographic and epidemiological analyses indicated a substantial genetic component contributing to each trait variation as well as overlapping genetic determinants and family clustering for some traits. CONCLUSIONS/SIGNIFICANCE: The data provide evidence for significant heritability of medical relevant traits that will be important in mapping quantitative traits. We suggest that this population isolate is suitable to identify rare variants associated with complex phenotypes that may be difficult to study in larger but more heterogeneous populations.


Subject(s)
Chromosome Mapping , Linkage Disequilibrium , Cluster Analysis , Cohort Studies , Demography , Female , Gene Frequency , Genetic Variation , Genetics, Population , Geography , Humans , Italy , Male , Phenotype , Population Groups/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...